Skip to main content

Advertisement

Log in

Detection and discrimination of seminal fluid using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy combined with chemometrics

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Semen is most frequently encountered body fluid in forensic cases apart from blood especially in sexual assault cases. The presence and absence of semen can help in conviction or exoneration of a suspect by either confirming or refuting the claims put forward by the suspect and the victim. However, in the wake of limited studies on non-destructive and rapid analysis of semen, it is fairly difficult. Therefore, it is an increasing demand to pioneer the application of available analytical methods in such manner that non-destructive, automated, rapid, and reliable identification and discrimination of body fluids can be established. In the present study, such a methodological application of attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy has been put forward as one of the initial steps towards the identification and discrimination/classification of seminal fluid from vaginal fluid and other human biological as well as non-biological look-alike semen substances using chemometric tools which are principal component analysis (PCA), partial least square regression (PLSR), and linear discriminant analysis (LDA). Effect of other simulated factors such as substrate interference, mixing with other body fluids, dilutions, and washing and chemical treatments to the samples has been studied. PCA resulted in 98.8% of accuracy for the discrimination of seminal fluid from vaginal fluid whilst 100% accuracy was obtained using LDA method. One hundred percent discrimination was achieved to discriminate semen from other biological fluids using PLSR and LDA, and from non-biological substances using PCA-LDA models. Furthermore, results of the effect of substrates, chemical treatment, mixing with vaginal secretions, and dilution have also been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Silva CS, Pimentel MF, Amigo JM et al (2017) Detecting semen stains on fabrics using near infrared hyperspectral images and multivariate models. TrAC Trends Anal Chem 95:23–35. https://doi.org/10.1016/j.trac.2017.07.026

    Article  CAS  Google Scholar 

  2. Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17. https://doi.org/10.1016/j.forsciint.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Zapata F, Fernández de la Ossa MÁ, García-Ruiz C (2015) Emerging spectrometric techniques for the forensic analysis of body fluids. TrAC Trends Anal Chem 64:53–63. https://doi.org/10.1016/j.trac.2014.08.011

    Article  CAS  Google Scholar 

  4. Orphanou C-M (2015) The detection and discrimination of human body fluids using ATR FT-IR spectroscopy. Forensic Sci Int 252:e10–e16. https://doi.org/10.1016/j.forsciint.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  5. Elkins KM (2011) Rapid presumptive “fingerprinting” of body fluids and materials by ATR FT-IR spectroscopy. J Forensic Sci 56:1580–1587. https://doi.org/10.1111/j.1556-4029.2011.01870.x

    Article  CAS  PubMed  Google Scholar 

  6. Virkler K, Lednev IK (2008) Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci Int 181:e1–e5. https://doi.org/10.1016/j.forsciint.2008.08.004

    Article  PubMed  Google Scholar 

  7. Quinn AA, Elkins KM (2017) The differentiation of menstrual from venous blood and other body fluids on various substrates using ATR FT-IR spectroscopy. J Forensic Sci 62:197–204. https://doi.org/10.1111/1556-4029.13250

    Article  CAS  PubMed  Google Scholar 

  8. Muro CK, Doty KC, Bueno J, Halámková L, Lednev IK (2015) Vibrational spectroscopy: recent developments to revolutionize forensic science. Anal Chem 87:306–327. https://doi.org/10.1021/ac504068a

    Article  CAS  PubMed  Google Scholar 

  9. McLaughlin G, Sikirzhytski V, Lednev IK (2013) Circumventing substrate interference in the Raman spectroscopic identification of blood stains. Forensic Sci Int 231:157–166. https://doi.org/10.1016/j.forsciint.2013.04.033

    Article  CAS  PubMed  Google Scholar 

  10. Gregório I, Zapata F, García-Ruiz C (2017) Analysis of human bodily fluids on superabsorbent pads by ATR-FTIR. Talanta 162:634–640. https://doi.org/10.1016/j.talanta.2016.10.061

    Article  CAS  PubMed  Google Scholar 

  11. Zapata F, de la Ossa MÁF, García-Ruiz C (2016) Differentiation of body fluid stains on fabrics using external reflection Fourier transform infrared spectroscopy (FT-IR) and chemometrics. Appl Spectrosc 70:654–665. https://doi.org/10.1177/0003702816631303

    Article  CAS  PubMed  Google Scholar 

  12. Goodpaster JV, Liszewski EA (2009) Forensic analysis of dyed textile fibers. Anal Bioanal Chem 394:2009–2018. https://doi.org/10.1007/s00216-009-2885-7

    Article  CAS  PubMed  Google Scholar 

  13. Manheim J, Doty KC, McLaughlin G, Lednev IK (2016) Forensic hair differentiation using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. Appl Spectrosc 70:1109–1117. https://doi.org/10.1177/0003702816652321

    Article  CAS  PubMed  Google Scholar 

  14. Boll MS, Doty KC, Wickenheiser R, Lednev IK (2017) Differentiation of hair using ATR FT-IR spectroscopy: a statistical classification of dyed and non-dyed hairs. Forensic Chem 6:1–9. https://doi.org/10.1016/j.forc.2017.08.001

    Article  CAS  Google Scholar 

  15. Sonnex E, Almond MJ, Baum JV, Bond JW (2014) Identification of forged Bank of England £20 banknotes using IR spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 118:1158–1163. https://doi.org/10.1016/j.saa.2013.09.115

    Article  CAS  Google Scholar 

  16. Harkins TR, Harris JT, Shreve OD (1959) Identification of pigments in paint products by infrared spectroscopy. Anal Chem 31:541–545. https://doi.org/10.1021/ac50164a025

    Article  CAS  Google Scholar 

  17. Bueno J, Sikirzhytski V, Lednev IK (2013) ATR-FTIR spectroscopy for gunshot residue analysis: potential for ammunition determination. Anal Chem 85:7287–7294. https://doi.org/10.1021/ac4011843

    Article  CAS  PubMed  Google Scholar 

  18. Causin V, Casamassima R, Marega C, Maida P, Schiavone S, Marigo A, Villari A (2008) The discrimination potential of ultraviolet-visible spectrophotometry, thin layer chromatography, and Fourier transform infrared spectroscopy for the forensic analysis of black and blue ballpoint inks. J Forensic Sci 53:1468–1473. https://doi.org/10.1111/j.1556-4029.2008.00867.x

    Article  CAS  PubMed  Google Scholar 

  19. Asri MNM, Nur Syuhaila Mat Desa W, Ismail D (2015) Fourier transform infrared (FTIR) spectroscopy with chemometric techniques for the classification of ballpoint pen inks. AJFSFM 1:194–200. https://doi.org/10.12816/0017699

    Article  Google Scholar 

  20. Williamson R, Raeva A, Almirall JR (2016) Characterization of printing inks using DART-Q-TOF-MS and attenuated total reflectance (ATR) FTIR. J Forensic Sci 61:706–714. https://doi.org/10.1111/1556-4029.13107

    Article  PubMed  Google Scholar 

  21. Brittain HG (2016) Attenuated Total reflection Fourier transform infrared (ATR FT-IR) spectroscopy as a forensic method to determine the composition of inks used to print the United States one-cent blue Benjamin Franklin postage stamps of the 19th century. Appl Spectrosc 70:128–136

    Article  CAS  Google Scholar 

  22. Mohamad Asri MN, Mat Desa WNS, Ismail D (2018) Source determination of red gel pen inks using Raman spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy combined with Pearson’s product moment correlation coefficients and principal component analysis. J Forensic Sci 63:285–291. https://doi.org/10.1111/1556-4029.13522

    Article  PubMed  Google Scholar 

  23. Lee LC, Liong C-Y, Jemain AA (2018) Effects of data pre-processing methods on classification of ATR-FTIR spectra of pen inks using partial least squares-discriminant analysis (PLS-DA). Chemom Intell Lab Syst 182:90–100. https://doi.org/10.1016/j.chemolab.2018.09.001

    Article  CAS  Google Scholar 

  24. Lapachinske SF, Okai GG, dos Santos A, de Bairros AV, Yonamine M (2015) Analysis of cocaine and its adulterants in drugs for international trafficking seized by the Brazilian Federal Police. Forensic Sci Int 247:48–53. https://doi.org/10.1016/j.forsciint.2014.11.028

    Article  CAS  PubMed  Google Scholar 

  25. Pereira LSA, Lisboa FLC, Coelho Neto J, Valladão FN, Sena MM (2018) Screening method for rapid classification of psychoactive substances in illicit tablets using mid infrared spectroscopy and PLS-DA. Forensic Sci Int 288:227–235. https://doi.org/10.1016/j.forsciint.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  26. Gładysz M, Król M, Kościelniak P (2017) Differentiation of red lipsticks using the attenuated total reflection technique supported by two chemometric methods. Forensic Sci Int 280:130–138. https://doi.org/10.1016/j.forsciint.2017.09.019

    Article  CAS  PubMed  Google Scholar 

  27. Sharma V, Bharti A, Kumar R (2019) On the spectroscopic investigation of lipstick stains: forensic trace evidence. Spectrochim Acta A Mol Biomol Spectrosc 215:48–57. https://doi.org/10.1016/j.saa.2019.02.093

    Article  CAS  PubMed  Google Scholar 

  28. Sharma V, Bhardwaj S, Kumar R (2019) On the spectroscopic investigation of Kohl stains via ATR-FTIR and multivariate analysis: application in forensic trace evidence. Vib Spectrosc 101:81–91. https://doi.org/10.1016/j.vibspec.2019.02.006

    Article  CAS  Google Scholar 

  29. Yadav PK, Sharma RM (2019) Classification of illicit liquors based on their geographic origin using attenuated total reflectance (ATR) – Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Forensic Sci Int 295:e1–e5. https://doi.org/10.1016/j.forsciint.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  30. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120. https://doi.org/10.3109/10409239509085140

    Article  CAS  PubMed  Google Scholar 

  31. Wood BR, Quinn MA, Tait B, Ashdown M, Hislop T, Romeo M, McNaughton D (1998) FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies. Biospectroscopy 4:75–91. https://doi.org/10.1002/(SICI)1520-6343(1998)4:2<75::AID-BSPY1>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  32. Sablinskas V, Velicka M, Pucetaite M, et al (2018) In situ detection of cancerous kidney tissue by means of fiber ATR-FTIR spectroscopy. In: Imaging, manipulation, and analysis of biomolecules, cells, and tissues XVI. International Society for Optics and Photonics, p 1049713

  33. Paraskevaidi M, Martin-Hirsch PL, Martin FL (2018) ATR-FTIR spectroscopy tools for medical diagnosis and disease investigation. In: Nanotechnology characterization tools for biosensing and medical diagnosis. Springer, Berlin, Heidelberg, pp 163–211

    Chapter  Google Scholar 

  34. Kumari A, Kaur J, Bhattacharyya S (2018) Application of Fourier transform-infrared spectroscopy as a tool for early cancer detection. Am J Biomed Sci 10:139–148. https://doi.org/10.5099/aj180300139

    Article  CAS  Google Scholar 

  35. Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta Biomembr 1758:858–867. https://doi.org/10.1016/j.bbamem.2006.02.011

    Article  CAS  Google Scholar 

  36. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta Bioenerg 1767:1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

    Article  CAS  Google Scholar 

  37. Ollesch J, Drees SL, Heise HM, Behrens T, Brüning T, Gerwert K (2013) FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification. Analyst 138:4092–4102. https://doi.org/10.1039/C3AN00337J

    Article  CAS  PubMed  Google Scholar 

  38. Jackson M, Sowa MG, Mantsch HH (1997) Infrared spectroscopy: a new frontier in medicine. Biophys Chem 68:109–125. https://doi.org/10.1016/S0301-4622(97)80555-8

    Article  CAS  PubMed  Google Scholar 

  39. Ghimire H, Venkataramani M, Bian Z, Liu Y, Perera AGU (2017) ATR-FTIR spectral discrimination between normal and tumorous mouse models of lymphoma and melanoma from serum samples. Sci Rep 7:16993. https://doi.org/10.1038/s41598-017-17027-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neves ACO, Silva PP, Morais CLM et al (2016) ATR-FTIR and multivariate analysis as a screening tool for cervical cancer in women from Northeast Brazil: a biospectroscopic approach. RSC Adv 6:99648–99655. https://doi.org/10.1039/C6RA21331F

    Article  CAS  Google Scholar 

  41. Hands JR, Clemens G, Stables R, Ashton K, Brodbelt A, Davis C, Dawson TP, Jenkinson MD, Lea RW, Walker C, Baker MJ (2016) Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy. J Neuro-Oncol 127:463–472. https://doi.org/10.1007/s11060-016-2060-x

    Article  Google Scholar 

  42. Minnes R, Nissinmann M, Maizels Y, Gerlitz G, Katzir A, Raichlin Y (2017) Using attenuated total reflection–Fourier transform infra-red (ATR-FTIR) spectroscopy to distinguish between melanoma cells with a different metastatic potential. Sci Rep 7:4381. https://doi.org/10.1038/s41598-017-04678-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Wael K, Lepot L, Gason F, Gilbert B (2008) In search of blood—detection of minute particles using spectroscopic methods. Forensic Sci Int 180:37–42. https://doi.org/10.1016/j.forsciint.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  44. Gregório I, Zapata F, Torre M, García-Ruiz C (2017) Statistical approach for ATR-FTIR screening of semen in sexual evidence. Talanta 174:853–857. https://doi.org/10.1016/j.talanta.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  45. Lin H, Zhang Y, Wang Q, Li B, Huang P, Wang Z (2017) Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy. Sci Rep 7:13254. https://doi.org/10.1038/s41598-017-13725-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin H, Zhang Y, Wang Q, Li B, Fan S, Wang Z (2018) Species identification of bloodstains by ATR-FTIR spectroscopy: the effects of bloodstain age and the deposition environment. Int J Legal Med 132:667–674. https://doi.org/10.1007/s00414-017-1634-2

    Article  PubMed  Google Scholar 

  47. Zhang Y, Wang Q, Li B, Wang Z, Li C, Yao Y, Huang P, Wang Z (2017) Changes in attenuated total reflection Fourier transform infrared spectra as blood dries out. J Forensic Sci 62:761–767. https://doi.org/10.1111/1556-4029.13324

    Article  PubMed  Google Scholar 

  48. Takamura A, Watanabe K, Akutsu T, Ozawa T (2018) Soft and robust identification of body fluid using Fourier transform infrared spectroscopy and chemometric strategies for forensic analysis. Sci Rep 8:8459. https://doi.org/10.1038/s41598-018-26873-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takamura A, Watanabe K, Akutsu T, Ikegaya H, Ozawa T (2017) Spectral mining for discriminating blood origins in the presence of substrate interference via attenuated total reflection Fourier transform infrared spectroscopy: postmortem or antemortem blood? Anal Chem 89:9797–9804. https://doi.org/10.1021/acs.analchem.7b01756

    Article  CAS  PubMed  Google Scholar 

  50. Zapata F, Silva Gregório Martins M, García-Ruiz C (2015) Body fluids and spectroscopic techniques in forensics: a perfect match? J Forens Med 1. https://doi.org/10.4172/jfm.1000101

  51. Nussbaumer C, Gharehbaghi-Schnell E, Korschineck I (2006) Messenger RNA profiling: a novel method for body fluid identification by real-time PCR. Forensic Sci Int 157:181–186. https://doi.org/10.1016/j.forsciint.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Liu B, Chengchen S, Xu H, Xue A, Zhao Z, Shen Y, Tang Q, Xie J (2017) Evaluation of the inclusion of circular RNAs in mRNA profiling in forensic body fluid identification. Int J Legal Med 132:43–52. https://doi.org/10.1007/s00414-017-1690-7

    Article  PubMed  Google Scholar 

  53. Roeder AD, Haas C (2013) mRNA profiling using a minimum of five mRNA markers per body fluid and a novel scoring method for body fluid identification. Int J Legal Med 127:707–721. https://doi.org/10.1007/s00414-012-0794-3

    Article  PubMed  Google Scholar 

  54. Nader LM, Mohamed AS (2015) Molecular biomarkers: the development of MRNA multiplex RT-PCR assay for the definitive identification of semen. EJFSAT 1:169–177. https://doi.org/10.15406/mojt.2015.01.00025

    Article  Google Scholar 

  55. Mayes C, Houston R, Seashols-williams S et al (2019) The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples. Legal Med 38:45–50. https://doi.org/10.1016/j.legalmed.2019.03.007

    Article  CAS  PubMed  Google Scholar 

  56. Lindenbergh A, De Pagter M, Ramdayal G et al (2012) Forensic science international : genetics a multiplex (m) RNA-profiling system for the forensic identification of body fluids and contact traces. Forensic Sci Int Genet 6:565–577. https://doi.org/10.1016/j.fsigen.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  57. Jakubowsk AJ, Maciejewsk AA, Pawłowski R (2011) mRNA profiling in identification of biological fluids in forensic genetics. Probl Forensic Sci 87:204–215

    Google Scholar 

  58. Peng D, Wang N, Li Z, Tian H, Liang W, Zhang L (2019) The expression of 10 candidate specific microRNA markers for human body fluid identification in animal buccal swabs. Forensic Sci Int 300:e44–e49. https://doi.org/10.1016/j.forsciint.2019.04.036

    Article  CAS  PubMed  Google Scholar 

  59. Li Z, Bai P, Peng D et al (2015) Influences of different RT-qPCR methods on forensic body fluid identification by microRNA. Forensic Sci Int Genet Suppl Ser 5:295–297

    Article  Google Scholar 

  60. Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 387:303–314. https://doi.org/10.1016/j.ab.2009.01.037

    Article  CAS  PubMed  Google Scholar 

  61. Hanson E, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Forensic Sci Int Genet Suppl Ser 2:503–504. https://doi.org/10.1016/j.fsigss.2009.08.184

    Article  Google Scholar 

  62. Zubakov D, Boersma AWM, Choi Y, Kayser M (2010) MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 124:217–226. https://doi.org/10.1007/s00414-009-0402-3

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang Z, Zhang J, Luo H, Ye Y, Yan J, Hou Y (2013) Screening and confirmation of microRNA markers for forensic body fluid identification. Forensic Sci Int Genet 7:116–123. https://doi.org/10.1016/j.fsigen.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  64. Luo XY, Li ZL, Peng D et al (2015) MicroRNA markers for forensic body fluid identification obtained from miRCURY™ LNA array. Forensic Sci Int Genet Suppl Ser 5:e630–e632. https://doi.org/10.1016/j.fsigss.2015.10.006

    Article  Google Scholar 

  65. Tian H, Lv M, Li Z et al (2017) Semen-specific miRNAs: suitable for the distinction of infertile semen in the body fluid identification? Forensic Sci Int Genet 33:161–167. https://doi.org/10.1016/j.fsigen.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  66. Silva SS (2015) Forensic miRNA : potential biomarker for body fluids? Forensic Sci Int Genet 14:1–10. https://doi.org/10.1016/j.fsigen.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  67. Wang S, Wang Z, Tao R, He G, Liu J, Li C, Hou Y (2019) The potential use of Piwi-interacting RNA biomarkers in forensic body fluid identification: a proof-of-principle study. Forensic Sci Int Genet 39:129–135. https://doi.org/10.1016/j.fsigen.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  68. Liu B, Song F, Yang Q, Zhou Y, Shao C, Shen Y, Zhao Z, Tang Q, Hou Y, Xie J (2019) Characterization of tissue-specific biomarkers with the expression of circRNAs in forensically relevant body fluids. Int J Legal Med 133:1–11. https://doi.org/10.1007/s00414-019-02027-y

    Article  Google Scholar 

  69. An JH, Choi A, Shin K (2013) DNA methylation-specific multiplex assays for body fluid identification. Int J Legal Med 127:35–43. https://doi.org/10.1007/s00414-012-0719-1

    Article  PubMed  Google Scholar 

  70. Antunes J, Silva DSBS, Balamurugan K, Duncan G, Alho CS, McCord B (2016) High-resolution melt analysis of DNA methylation to discriminate semen in biological stains. Anal Biochem 494:40–45. https://doi.org/10.1016/j.ab.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  71. Gomes I, Kohlmeier F, Schneider PM (2011) Genetic markers for body fluid and tissue identification in forensics. Forensic Sci Int Genet Suppl Ser 3:e469–e470. https://doi.org/10.1016/j.fsigss.2011.09.096

    Article  Google Scholar 

  72. Zrnec D, Vickovic S, Grs B, Popovic M, Mršić G (2013) DNA methylation: the future of crime scene investigation? Mol Biol Rep 40:4349–4360. https://doi.org/10.1007/s11033-013-2525-3

    Article  CAS  PubMed  Google Scholar 

  73. Balamurugan K, Bombardi R, Duncan G, Mccord B (2014) Identification of spermatozoa by tissue-specific differential DNA methylation using bisulfite modification and pyrosequencing. Electrophoresis 35:1–8. https://doi.org/10.1002/elps.201400175

    Article  CAS  Google Scholar 

  74. Mccord B, Balamurugan K (2018) Body fluid identification using epigenetic methylation markers and pyrosequencing. thesis, U.S. Department of Justice

  75. Choi A, Shin K-J, Yang WI, Lee HY (2014) Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA. Int J Legal Med 128:33–41. https://doi.org/10.1007/s00414-013-0918-4

    Article  PubMed  Google Scholar 

  76. Gomaa R, Salehi J, Behl S (2017) DNA methylation as a biomarker for body fluid identification. Arab J Forensic Sci Forensic Med 1:681–694. https://doi.org/10.26735/16586794.2017.001

    Article  Google Scholar 

  77. Fachet C, Quarino L, Karnas KJ (2017) High resolution melt curve analysis based on methylation status for human semen identification. Forensic Sci Med Pathol 13:86–91. https://doi.org/10.1007/s12024-016-9825-6

    Article  CAS  PubMed  Google Scholar 

  78. Forat S, Huettel B, Reinhardt R, Fimmers R, Haidl G, Denschlag D, Olek K (2016) Methylation markers for the identification of body fluids and tissues from forensic trace evidence. PLoS One 11:1–19. https://doi.org/10.1371/journal.pone.0147973

    Article  CAS  Google Scholar 

  79. Frumkin D, Wasserstrom A, Budowle B, Davidson A (2011) DNA methylation-based forensic tissue identification. Forensic Sci Int Genet 5:517–524. https://doi.org/10.1016/j.fsigen.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  80. Fu XD, Wu J, Wang J et al (2015) Identification of body fluid using tissue-specific DNA methylation markers. Forensic Sci Int Genet ser 5:151–153

    Article  Google Scholar 

  81. Gautam R, Vanga S, Ariese F, Umapathy S (2015) Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech Instrum 2:8–38. https://doi.org/10.1140/epjti/s40485-015-0018-6

    Article  Google Scholar 

  82. Kumar R, Sharma V (2018) Chemometrics in forensic science. TrAC Trends Anal Chem 105:191–201. https://doi.org/10.1016/j.trac.2018.05.010

    Article  CAS  Google Scholar 

  83. De Luca M, Terouzi W, Kzaiber F et al (2012) Classification of moroccan olive cultivars by linear discriminant analysis applied to ATR–FTIR spectra of endocarps. Int J Food Sci Technol 47:1286–1292. https://doi.org/10.1111/j.1365-2621.2012.02972.x

    Article  CAS  Google Scholar 

  84. Gray D, Frascione N, Daniel B (2012) Development of an immunoassay for the differentiation of menstrual blood from peripheral blood. Forensic Sci Int 220:12–18. https://doi.org/10.1016/j.forsciint.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  85. Holtkötter H, Dias Filho CR, Schwender K, Stadler C, Vennemann M, Pacheco AC, Roca G (2018) Forensic differentiation between peripheral and menstrual blood in cases of alleged sexual assault—validating an immunochromatographic multiplex assay for simultaneous detection of human hemoglobin and D-dimer. Int J Legal Med 132:683–690. https://doi.org/10.1007/s00414-017-1719-y

    Article  PubMed  Google Scholar 

  86. Unscrambler X (CAMO Software AS, Oslo, Norway)

  87. Lee LC, Liong C-Y, Jemain AA (2017) A contemporary review on data preprocessing (DP) practice strategy in ATR-FTIR spectrum. Chemom Intell Lab Syst 163:64–75. https://doi.org/10.1016/j.chemolab.2017.02.008

    Article  CAS  Google Scholar 

  88. Jolliffe IT (2002) Prinicipal component analysis, 2nd Editio. Springer series in statistics

  89. Verma T, Sahu RK (2013) PCA-LDA based face recognition system & results comparison by various classification techniques. ICGHPC. 1-15

  90. Adams KM (1979) Linear discriminant analysis in clinical neuropsychology research. J Clin Neuropsychol 1:259–272. https://doi.org/10.1080/01688637908414455

    Article  Google Scholar 

  91. Qiao H (2019) Discriminative principal component analysis: a reverse thinking

  92. Wu J (2014) Research on several problems in partial least squares regression analysis. Open Electr Electron Eng J 8:754–758

    Article  Google Scholar 

  93. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

  94. Morillas AV, Gooch J, Frascione N (2018) Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains. Talanta 184:1–6. https://doi.org/10.1016/j.talanta.2018.02.110

    Article  CAS  PubMed  Google Scholar 

  95. Chittur KK (1998) FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 19:357–369

    Article  CAS  Google Scholar 

  96. Zou Y, Xia P, Yang F et al (2016) Whole blood and semen identification using mid-infrared and Raman spectrum analysis for forensic applications. Anal Methods 8:3763–3767. https://doi.org/10.1039/C5AY03337C

    Article  CAS  Google Scholar 

  97. Zha S, Wei X, Fang R, et al (2019) Estimation of the age of human semen stains by attenuated total reflection Fourier transform infrared spectroscopy: a preliminary study. Forensic Sci Res 1–7

  98. Sharma S, Chophi R, Singh R (2019) Forensic discrimination of menstrual blood and peripheral blood using attenuated total reflectance (ATR)-Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Int J Legal Med 1–15 https://doi.org/10.1007/s00414-019-02134-w

    Article  Google Scholar 

Download references

Acknowledgements

The authors would sincerely like to thank the University Grants Commission (UGC), Ministry of Human Resource Development, Govt. of India for the financial assistance for providing laboratory facilities in the Department of Forensic Science, Punjabi University Patiala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder Singh.

Ethics declarations

Ethical approval

All procedures performed in this study involving human participants were in accordance with the Institutional Ethical Committee (IEC), Punjabi university, Patiala 147002, with letter number IEC/03-2017/08. All the participants were informed about the study and their consent was duly recorded.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Singh, R. Detection and discrimination of seminal fluid using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy combined with chemometrics. Int J Legal Med 134, 411–432 (2020). https://doi.org/10.1007/s00414-019-02222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02222-x

Keywords

Navigation