Skip to main content
Log in

Species identification of bloodstains by ATR-FTIR spectroscopy: the effects of bloodstain age and the deposition environment

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In this study, we investigated the potential of attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy combined with advanced chemometrics for species identification of bloodstains similar to evidence obtained from real crime scenes. Two partial least squares-discriminant analysis classification models (a human-mammal-domestic fowl trilateral model and a species-specific model) were established. The models demonstrated complete separation among the three classes (human, mammal, and domestic fowl) and distinguished six species (human, rat, rabbit, dog, chicken, and duck). Validation was subsequently conducted to evaluate the robustness of these two models, which resulted in 100 and 94.2% accuracy; even human bloodstains placed in an outdoor environment for up to 107 days were successfully identified. Additionally, all bloodstains were positively identified as blood using the squared Euclidean cosine method by comparing the spectra with those of non-blood substances that had a similar appearance or easily produced false positives. These results demonstrate that ATR-FTIR spectroscopy combined with chemometrics can be a powerful tool for species identification of bloodstains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. James SH, Kish PE, Sutton TP, Eckert WG (2016) Principles of bloodstain pattern analysis: theory and practice. CRC Press, Florida

    Google Scholar 

  2. Lee HC, Gaensslen RE, Pagliaro EM, Guman MB, Berka KM, Keith TP (1989) The effect of presumptive test, latent fingerprint and some other reagents and materials on subsequent serological identification, genetic marker and DNA testing in bloodstains. J Forensic Identif 39(6):339–358

    Google Scholar 

  3. Li R (2015) Forensic biology. CRC Press, Florida

    Google Scholar 

  4. Kobilinsky L (2012) Forensic chemistry handbook. Wiley, New Jersey

    Google Scholar 

  5. James SH, Nordby JJ (2016) Forensic science: an introduction to scientific and investigative techniques. CRC Press, Florida

    Google Scholar 

  6. Daeid NN, Houck M (2012) Interpol’s forensic science review 2010. CRC Press, Florida

    Google Scholar 

  7. McLaughlin G, Doty KC, Lednev IK (2014) Raman spectroscopy of blood for species identification. Anal Chem 86(23):11628–11633. doi:10.1021/ac5026368

    Article  CAS  PubMed  Google Scholar 

  8. Zapata F, García-Ruiz C (2015) Emerging spectrometric techniques for the forensic analysis of body fluids. TrAC, Trends Anal Chem 64:53–63

    Article  CAS  Google Scholar 

  9. Virkler K, Lednev IK (2009) Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis. Anal Chem 81(18):7773–7777

    Article  CAS  PubMed  Google Scholar 

  10. Mclaughlin G, Doty KC, Lednev IK (2014) Discrimination of human and animal blood traces via Raman spectroscopy. Forensic Sci Int 238C(5):91–95

    Article  Google Scholar 

  11. Mistek E, Lednev IK (2015) Identification of species’ blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy. Anal Bioanal Chem 407(24):7435–7442. doi:10.1007/s00216-015-8909-6

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Zhang S, Sun M, Wang Z, Li H, Li Y, Li G, Lin L (2016) Blood species identification using near-infrared diffuse transmitted spectra and PLS-DA method. Infrared Phys Technol 76:587–591

    Article  CAS  Google Scholar 

  13. Doty KC, Mclaughlin G, Lednev IK (2016) A Raman “spectroscopic clock” for bloodstain age determination: the first week after deposition. Anal Bioanal Chem 408(15):1–9

    Article  Google Scholar 

  14. Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43(5):772–777

    Article  CAS  Google Scholar 

  15. Zimmermann B, Kohler A (2013) Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy. Appl Spectrosc 67(8):892–902

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Hibbert DB, Fuller S (2007) Numerical methods for comparing fresh and weathered oils by their FTIR spectra. Analyst 132(8):792–800

    Article  CAS  PubMed  Google Scholar 

  17. Cotrim AR, Ferraz A, Gonçalves AR, Silva FT, Bruns RE (1999) Identifying the origin of lignins and monitoring their structural changes by means of FTIR-PCA and -SIMCA. Bioresour Technol 68(1):29–34

    Article  CAS  Google Scholar 

  18. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31(8):651–666. doi:10.1016/j.patrec.2009.09.011

    Article  Google Scholar 

  19. Napoleon D, Pavalakodi S (2010) A new method for dimensionality reduction using KMeans clustering algorithm for high dimensional data set. Int J Comput Appl 13(7):41–46

    Google Scholar 

  20. Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods 5(16):3790. doi:10.1039/c3ay40582f

    Article  CAS  Google Scholar 

  21. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4(1):81–89. doi:10.1007/s11306-007-0099-6

    Article  CAS  Google Scholar 

  22. Trevisan J, Angelov PP, Carmichael PL, Scott AD, Martin FL (2012) Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. Analyst 137(14):3202–3215

    Article  CAS  PubMed  Google Scholar 

  23. Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA, Thiefin G, Sockalingum GD (2016) Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev 45(7):1803–1818. doi:10.1039/c5cs00585j

    Article  CAS  PubMed  Google Scholar 

  24. SC, Singh BR (2004) A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry 43(9):2541–2549

  25. Caine S, Heraud P, Tobin MJ, McNaughton D, Bernard CC (2012) The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue. NeuroImage 59(4):3624–3640. doi:10.1016/j.neuroimage.2011.11.033

    Article  PubMed  Google Scholar 

  26. Kochan K, Heraud P, Kiupel M, Yuzbasiyangurkan V, Mcnaughton D, Baranska M, Wood BR (2015) Comparison of FTIR transmission and transfection substrates for canine liver cancer detection. Analyst 140(7):2402–2411

    Article  CAS  PubMed  Google Scholar 

  27. Polyanichko A, Chikhirzhina E (2013) Interaction between DNA and chromosomal proteins HMGB1 and H1 studied by IR/VCD spectroscopy. J Mol Struct 1044(29):167–172

    Article  CAS  Google Scholar 

  28. Fujioka N, Morimoto Y, Arai T, Kikuchi M (2004) Discrimination between normal and malignant human gastric tissues by Fourier transform infrared spectroscopy. Cancer detect. Prevention 28(1):32–36

    Google Scholar 

  29. Dovbeshko GI, Gridina NY, Kruglova EB, Pashchuk OP (2000) FTIR spectroscopy studies of nucleic acid damage. Talanta 53(1):233–246

    Article  CAS  PubMed  Google Scholar 

  30. Petibois C, Déléris G (2005) Erythrocyte adaptation to oxidative stress in endurance training. Arch Med Res 36(5):524–531

    Article  CAS  PubMed  Google Scholar 

  31. Kamezawa S (1955) A contribution to the morphological study of nucleated erythrocytes in man and various animals; the 24th report of histochemical study of peroxidase. Okajimas Folia Anat Jpn 27(6):383–400

    Article  CAS  PubMed  Google Scholar 

  32. Bremmer RH, de Bruin KG, van Gemert MJ, van Leeuwen TG, Aalders MC (2012) Forensic quest for age determination of bloodstains. Forensic Sci Int 216(1–3):1–11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 81471819).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuanliang Fan or Zhenyuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Zhang, Y., Wang, Q. et al. Species identification of bloodstains by ATR-FTIR spectroscopy: the effects of bloodstain age and the deposition environment. Int J Legal Med 132, 667–674 (2018). https://doi.org/10.1007/s00414-017-1634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1634-2

Keywords

Navigation