Skip to main content
Log in

T2 and T2 mapping in ex situ porcine myocardium: myocardial intravariability, temporal stability and the effects of complete coronary occlusion

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Diagnosis of ischaemia-related sudden cardiac death in the absence of microscopic and macroscopic ischaemic lesions remains a challenge for medical examiners. Medical imaging techniques increasingly provide support in post-mortem examinations by detecting and documenting internal findings prior to autopsy. Previous studies have characterised MR relaxation times to investigate post-mortem signs of myocardial infarction in forensic cohorts. In this prospective study based on an ex situ porcine heart model, we report fundamental findings related to intramyocardial variability and temporal stability of T2 as well as the effects of permanent coronary occlusion on T2 and T2 relaxation in post-mortem myocardium. The ex situ porcine hearts included in this study (n= 19) were examined in two groups (Ss, n= 11 and Si, n= 8). All magnetic resonance imaging (MRI) examinations were performed ex situ, at room temperature and at 3 T. In the Ss group, T2 mapping was performed on slaughterhouse porcine hearts at different post-mortem intervals (PMI) between 7 and 26 h. Regarding the intramyocardial variability, no statistically significant differences in T2 were observed between myocardial segments (p= 0.167). Assessment of temporal stability indicated a weak negative correlation (r=− 0.21) between myocardial T2 and PMI. In the Si group, animals underwent ethanol-induced complete occlusion of the left anterior descending artery. T2 and T2 mapping were performed within 3 h of death. Differences between the expected ischaemic and remote regions were statistically significant for T2 (p= 0.007), however not for T2 (p= 0.062). Our results provide important information for future assessment of the diagnostic potential of quantitative MRI in the post-mortem detection of early acute myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Basso C, Aguilera B, Banner J, Cohle S, d’Amati G, de Gouveia RH, di Gioia C, Fabre A, Gallagher PJ, Leone O, Lucena J, Mitrofanova L, Molina P, Parsons S, Rizzo S, Sheppard MN, Mier MPS, Kim Suvarna S, Thiene G, van der Wal A, Vink A, Michaud K (2017) Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch 471(6):691–705. https://doi.org/10.1007/s00428-017-2221-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chugh SS, Reinier K, Teodorescu C, Evanado A, Kehr E, Al Samara M, Mariani R, Gunson K, Jui J (2008) Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis 51(3):213–228. https://doi.org/10.1016/j.pcad.2008.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  3. Michaud K, Grabherr S, Jackowski C, Bollmann M, Doenz F, Mangin P (2014) Postmortem imaging of sudden cardiac death. Int J Legal Med 128:127–137. https://doi.org/10.1007/s00414-013-0819-6

    Article  PubMed  Google Scholar 

  4. Jackowski C, Schwendener N, Grabherr S, Persson A (2013) Post-mortem cardiac 3-T magnetic resonance imaging: visualization of sudden cardiac death? J Am Coll Cardiol 62:617–629. https://doi.org/10.1016/j.jacc.2013.01.089

    Article  PubMed  Google Scholar 

  5. Grabherr S, Egger C, Vilarino R, Campana L, Jotterand M, Dedouit F (2017) Modern post-mortem imaging: an update on recent developments. Forens Sci Res 2(2):52–64. https://doi.org/10.1080/20961790.2017.1330738

    Article  Google Scholar 

  6. Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, Mascherbauer J, Nezafat R, Salerno M, Schelbert EB, Taylor AJ, Thompson R, Ugander M, van Heeswijk RB, Friedrich MG (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19(1):75. https://doi.org/10.1186/s12968-017-0389-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guidi B, Aquaro GD, Gesi M, Emdin M, Di Paolo M (2018) Postmortem cardiac magnetic resonance in sudden cardiac death. Heart Fail Rev. https://doi.org/10.1007/s10741-018-9705-0

    Article  PubMed  Google Scholar 

  8. Jackowski C, Warntjes MJB, Berge J, Bär W, Persson A (2011) Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem MRI. Eur Radiol 21:70–8. https://doi.org/10.1007/s00330-010-1884-6

    Article  PubMed  Google Scholar 

  9. Jackowski C, Hofmann K, Schwendener N, Schweitzer W, Keller-Sutter M (2012) Coronary thrombus and peracute myocardial infarction visualized by unenhanced postmortem MRI prior to autopsy. Forensic Sci Int 214(1-3):e16–9. https://doi.org/10.1016/j.forsciint.2011.07.010

    Article  PubMed  Google Scholar 

  10. Jackowski C, Grabherr S, Schwendener N (2013) Pulmonary thrombembolism as cause of death on unenhanced postmortem 3T MRI. Eur Radiol 23:1266–1270. https://doi.org/10.1007/s00330-012-2728-3

    Article  PubMed  Google Scholar 

  11. Jackowski C, Warntjes MJB, Kihlberg J, Berge J, Thali MJ, Persson A (2011) Quantitative MRI in isotropic spatial resolution for forensic soft tissue documentation. Why and how? J Forensic Sci 56(1):208–215. https://doi.org/10.1111/j.1556-4029.2010.01547.x

    Article  PubMed  Google Scholar 

  12. Zech WD, Schwendener N, Persson A, Warntjes M, Jackowski C (2015) Postmortem MR quantification of the heart for characterization and differentiation of ischaemic myocardial lesions. Eur Radiol 25 (7):1–7. https://doi.org/10.1007/s00330-014-3582-2

    Article  Google Scholar 

  13. Schwendener N, Jackowski C, Persson A, Warntjes MJ, Schuster F, Riva F, Zech WD (2017) Detection and differentiation of early acute and following age stages of myocardial infarction with quantitative post-mortem cardiac 1.5 T MR. Forensic Sci Int 270(270):248–254. https://doi.org/10.1016/j.forsciint.2016.10.014

    Article  PubMed  Google Scholar 

  14. Persson A, Baeckmann J, Berge J, Jackowski C, Warntjes M, Zech WD (2017) Temperature-corrected postmortem 3-T MR quantification of histopathological early acute and chronic myocardial infarction: a feasibility study. Int J Legal Med 132(2):1–9. https://doi.org/10.1007/s00414-017-1614-6

    Article  Google Scholar 

  15. Ruder T, Thali M, Hatch G (2014) Essentials of forensic post-mortem MR imaging in adults. British J Radiol 87(1036):20130,567. https://doi.org/10.1259/bjr.20130567

    Article  CAS  Google Scholar 

  16. Saitou H, Kobayashi T, Shiotani S, Tashiro K, Miyamoto K, Hayakawa H, Homma K (2017) Myocardial relaxation times measured from postmortem magnetic resonance imaging in adult humans. J Forensic Radiol Imaging 10:23–28. https://doi.org/10.1016/j.jofri.2017.07.001

    Article  Google Scholar 

  17. Warntjes JBM, Dahlqvist O, Lundberg P (2007) Novel method for rapid, simultaneous T1, T2*, and proton density quantification. Magn Reson Med 57:528–37. https://doi.org/10.1002/mrm.21165

    Article  CAS  PubMed  Google Scholar 

  18. Ruder TD, Hatch GM, Siegenthaler L, Ampanozi G, Mathier S, Thali MJ, Weber OM (2012) The influence of body temperature on image contrast in post mortem MRI. Eur J Radiol 81:1366–1370. https://doi.org/10.1016/j.ejrad.2011.02.062

    Article  PubMed  Google Scholar 

  19. Adolphi N, Gerrard C, Hatch G, Takacs N, Nolte K (2013) Determining the temperature-dependence of tissue relaxation times (T1 and T2) for prospective optimization of post-mortem magnetic resonance (PMMR) image contrast. J Forensic Radiol Imaging 1(2):80. https://doi.org/10.1016/j.jofri.2013.03.002

    Article  Google Scholar 

  20. Birkl C, Langkammer C, Haybaeck J, Ernst C, Stollberger R, Fazekas F, Ropele S (2014) Temperature-induced changes of magnetic resonance relaxation times in the human brain: a postmortem study. Magn Reson Med 71(4):1575–1580. https://doi.org/10.1002/mrm.24799

    Article  PubMed  Google Scholar 

  21. Zech WD, Schwendener N, Persson A, Warntjes M, Jackowski C (2015) Temperature dependence of postmortem MR quantification for soft tissue discrimination. Eur Radiol 25(8):2381–9. https://doi.org/10.1007/s00330-015-3588-4

    Article  PubMed  Google Scholar 

  22. Webb B, Widek T, Neumayer B, Bruguier C, Scheicher S, Sprenger H, Grabherr S, Schwark T, Stollberger R (2017) Temperature dependence of viscosity, relaxation times (T1, T2) and simulated contrast for potential perfusates in post-mortem MR angiography (PMMRA). Int J Legal Med 131(3):739–749. https://doi.org/10.1007/s00414-016-1482-5

    Article  PubMed  Google Scholar 

  23. Adolphi NL (2016) An equation-free introduction to post-mortem MR image contrast and pulse sequence optimization. J Forensic Radiol Imaging 4:27–34. https://doi.org/10.1016/j.jofri.2015.12.007

    Article  Google Scholar 

  24. Ruder TD, Ebert LC, Aa Khattab, Rieben R, Thali MJ, Kamat P (2013) Edema is a sign of early acute myocardial infarction on post-mortem magnetic resonance imaging. Forensic Sci Med Pathol 9:501–505. https://doi.org/10.1007/s12024-013-9459-x

    Article  PubMed  Google Scholar 

  25. Calamante F, Lythgoe MF, Pell GS, Thomas DL, King MD, Busza AL, Sotak CH, Williams SR, Ordidge RJ, Gadian DG (1999) Early changes in water diffusion, perfusion, T1, and T2 during focal cerebral ischemia in the rat studied at 8.5 T. Magn Reson Med 41(3):479–485. https://doi.org/10.1002/(sici)1522-2594(199903)41:3<479::aid-mrm9>3.0.co;2-2

    Article  CAS  PubMed  Google Scholar 

  26. Roussel SA, van Bruggen N, King MD, Gadian DG (1995) Identification of collaterally perfused areas following focal cerebral ischemia in the rat by comparison of gradient echo and diffusion-weighted MRI. J Cereb Blood Flow Metab 15(4):578–586. https://doi.org/10.1038/jcbfm.1995.71

    Article  CAS  PubMed  Google Scholar 

  27. Kim W, Jeong MH, Sim DS, Hong YJ, Song HC, Park JT, Ahn YK (2011) A porcine model of ischemic heart failure produced by intracoronary injection of ethyl alcohol. Heart Vessels 26(3):342–348. https://doi.org/10.1007/s00380-010-0022-3

    Article  PubMed  Google Scholar 

  28. Crick SJ, Sheppard MN, Yen Ho S, Gebstein L, Anderson RH (1998) Anatomy of the pig heart: comparisons with normal human cardiac structure. J Anat 193(1):105–119. https://doi.org/10.1046/j.1469-7580.1998.19310105.x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ortiz-Pérez JT, Rodríguez J, Meyers SN, Lee DC, Davidson C, Wu E (2008) Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. J Am Coll Cardiol Img 1(3):282–293. https://doi.org/10.1016/j.jcmg.2008.01.014

    Article  Google Scholar 

  30. Python Software Foundation (2014) Python language reference, version 3.4. Available at http://www.python.org

  31. Marstal K, Berendsen F, Staring M, Klein S (2016) Simpleelastix: a user-friendly, multi-lingual library for medical image registration. In: Schnabel J, Mori K (eds) International workshop on biomedical image registration (WBIR), Las Vegas, Nevada, USA, IEEE conference on computer vision and pattern recognition workshops, pp 574–582, DOI https://doi.org/10.1109/cvprw.2016.78, (to appear in print)

  32. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imag 29(1):196–205. https://doi.org/10.1109/TMI.2009.2035616

    Article  Google Scholar 

  33. Maier CF, Tan SG, Hariharan H, Potter HG (2003) T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging 17(3):358–364. https://doi.org/10.1002/jmri.10263

    Article  PubMed  Google Scholar 

  34. Mosher TJ, Liu Y, Torok CM (2010) Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running. Osteoarthritis Cartilage 18(3):358–364. https://doi.org/10.1016/j.joca.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  35. Przybylski A, Thiel B, Keller-Findeisen J, Stock B, Bates M (2017) Gpufit: an open-source toolkit for GPU-accelerated curve fitting. Sci Rep 7(1) 15:722. https://doi.org/10.1038/s41598-017-15313-9

    Article  CAS  Google Scholar 

  36. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–28. https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  PubMed  Google Scholar 

  37. Dettmeyer RB (2011) Forensic Histopathology. Springer, Heidelberg

    Book  Google Scholar 

  38. Kruisz J (2013) Temperaturabhängikeit der Relaxivität und Relaxationszeiten für post-mortem MRT. Graz University of Technology, Master thesis

    Google Scholar 

  39. Warntjes JBM, Leinhard OD, West J, Lundberg P (2008) Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med 60(2):320–329. https://doi.org/10.1002/mrm.21635

    Article  CAS  PubMed  Google Scholar 

  40. Kvernby S, Warntjes MJB, Haraldsson H, Carlhaell CJ, Engvall J, Ebbers T (2014) Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. J Cardiovasc Magn Reson 16(1):102. https://doi.org/10.1186/s12968-014-0102-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Webb B, Widek T, Scheicher S, Schwark T, Stollberger R (2018) Post-mortem MR angiography: quantitative investigation and intravascular retention of perfusates in ex situ porcine hearts. Int J Legal Med 132 (2):579–587. https://doi.org/10.1007/s00414-017-1763-7

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schuster A, Grunwald I, Chiribiri A, Southworth R, Ishida M, Hay G, Neumann N, Morton G, Perera D, Schaeffter T, Nagel E (2010) An isolated perfused pig heart model for the development, validation and translation of novel cardiovascular magnetic resonance techniques. J Cardiovasc Magn Reson 12(1):53. https://doi.org/10.1186/1532-429x-12-53

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ding H, Fernandez de Manuel L, Schär M, Schuleri KH, Halperin H, He L, Zviman MM, Beinart R, Herzka DA (2015) Three-dimensional whole-heart T2 mapping at 3T. Magn Reson Med 74 (3):803–816. https://doi.org/10.1002/mrm.25458

    Article  PubMed  Google Scholar 

  44. Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV, Simonetti OP (2009) T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 11(1):56–56. https://doi.org/10.1186/1532-429x-11-56

    Article  PubMed  PubMed Central  Google Scholar 

  45. von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, Wassmuth R, Greiser A, Schwenke C, Niendorf T, Schulz-Menger J (2013) Myocardial T1 and T2 mapping at 3T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 15(1):53. https://doi.org/10.1186/1532-429X-15-53

    Article  PubMed  PubMed Central  Google Scholar 

  46. Maceira AM, Monmeneu JV, Igual-Muñoz B, Lopez-Lereu PM, Garcia PM, Cosin J (2015) Reference values for regional and global myocardial T2 mapping with cardiovascular magnetic resonance at 1.5T and 3T. J Cardiovasc Magn Reson 17(Suppl 1):P12. https://doi.org/10.1186/1532-429x-17-s1-p12

    Article  PubMed Central  Google Scholar 

  47. Baessler B, Schaarschmidt F, Stehning C, Schnackenburg B, Maintz D, Bunck AC (2015) A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3T in healthy volunteers. Eur J Radiol 84(11):2161–2170. https://doi.org/10.1016/j.ejrad.2015.08.002

    Article  PubMed  Google Scholar 

  48. Shiotani S, Kobayashi T, Hayakawa H, Homma K, Sakahara H (2016) Hepatic relaxation times from postmortem MR imaging of adult humans. Magn Reson Med Sci 15:281–7. https://doi.org/10.2463/mrms.mp.2015-0086

    Article  PubMed  Google Scholar 

  49. Schwendener N, Jackowski C, Schuster F, Persson A, Warntjes MJ, Zech WD (2017) Temperature-corrected post-mortem 1.5 T MRI quantification of non-pathologic upper abdominal organs. Int J Legal Med 131(5):1369–1376. https://doi.org/10.1007/s00414-017-1622-6

    Article  PubMed  Google Scholar 

  50. Wassmuth R, Prothmann M, Utz W, Dieringer M, von Knobelsdorff-Brenkenhoff F, Greiser A, Schulz-Menger J (2013) Variability and homogeneity of cardiovascular magnetic resonance myocardial T2-mapping in volunteers compared to patients with edema. J Cardiovasc Magn Reson 15(1):27. https://doi.org/10.1186/1532-429X-15-27

    Article  PubMed  PubMed Central  Google Scholar 

  51. Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP, Raman SV (2011) Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging 4 (3):269–278. https://doi.org/10.1016/j.jcmg.2010.09.023

    Article  PubMed  PubMed Central  Google Scholar 

  52. Higgins CB, Herfkens R, Lipton MJ, Sievers R, Sheldon P, Kaufman L, Crooks LE (1983) Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am J Cardiol 52(1):184–188. https://doi.org/10.1016/0002-9149(83)90093-0

    Article  CAS  PubMed  Google Scholar 

  53. Garcia-Dorado D, Oliveras J, Gili J, Sanz E, Perez-Villa F, Barrabes J, Carreras MJ, Solares J, Soler-Soler J (1993) Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc Res 27:1462–9. https://doi.org/10.1093/cvr/27.8.1462

    Article  CAS  PubMed  Google Scholar 

  54. Rhee J-W, Marc LSL, Sabatine S (2011) Pathophysiology of heart disease, 5th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  55. Mondello C, Cardia L, Ventura-Spagnolo E (2017) Immunohistochemical detection of early myocardial infarction: a systematic review. Int J Legal Med 131(2):411–421. https://doi.org/10.1007/s00414-016-1494-1

    Article  PubMed  Google Scholar 

  56. Quast MJ, Huang NC, Hillman GR, Kent TA (1993) The evolution of acute stroke recorded by multimodal magnetic resonance imaging. Magn Reson Imaging 11(4):465–471. https://doi.org/10.1016/0730-725X(93)90465-P

    Article  CAS  PubMed  Google Scholar 

  57. Schilling A, Blankenburg F, Bernarding J, Heidenreich J, Wolf K (2002) Intracerebral pH affects the T2 relaxation time of brain tissue. Neuroradiology 44(12):968–972. https://doi.org/10.1007/s00234-002-0873-0

    Article  CAS  PubMed  Google Scholar 

  58. Louie EA, Gochberg DF, Does MD, Damon BM (2009) Transverse relaxation and magnetization transfer in skeletal muscle: Effect of pH. Magn Reson Med 61(3):560–569. https://doi.org/10.1002/mrm.21847

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Bridgette Webb is a recipient of a DOC Fellowship of the Austrian Academy of Sciences at the Ludwig Boltzmann Institute for Clinical Forensic Imaging, Graz, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bridgette Webb.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, B., Manninger, M., Leoni, M. et al. T2 and T2 mapping in ex situ porcine myocardium: myocardial intravariability, temporal stability and the effects of complete coronary occlusion. Int J Legal Med 134, 679–690 (2020). https://doi.org/10.1007/s00414-019-02211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02211-0

Keywords

Navigation