Skip to main content

Advertisement

Log in

Challenges in investigation of diabetes-related aviation fatalities—an analysis of 1491 subsequent aviation fatalities in USA during 2011–2016

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) could cause pilot incapacitation and result in aviation fatalities. The mechanisms could be directly as a consequence of acute hypoglycemia/subacute diabetic ketoacidosis (DKA) or indirectly as an acute cardiovascular event by contributing to the development of atherosclerosis in coronary or carotid and cerebral arteries. In this study, DM-related fatal flight accidents in the US National Transport Bureau’s database between years 2011–2016 were analyzed with special emphasis on postmortem (PM) glucose levels and correlation of toxicological reports with anamnestic information on DM. Additionally, autopsy results on coronary arteries were reviewed. In 43 out of 1491 (~ 3%) fatal accidents pilots had DM. Postmortem glucose or glycated hemoglobin percentage (Hb1Ac) was measured in 12 of the 43 cases; while antidiabetic medication was found in 14 of the cases (only two of the cases had both glucose measurements and medication). With the increasing prevalence of DM, a possibility of pilot incapacitation due to DM or complications of DM should be actively studied, even if no anamnestic information of DM was available. While PM hypoglycemia is difficult to assess, we propose a systematic investigation based on measurement of glucose, Hb1Ac%, and ketone bodies, and documentation of atherosclerotic lesions in major arteries to identify or rule out DM as a cause of pilot incapacitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FAA:

Federal aviation administration

AME:

Aviation medical examiner

ICAO:

International civil aviation organization

CAA:

Civil aviation authority

NTSB:

National transportation safety board

DKA:

Diabetic ketoacidosis

HbA1c:

Glycated hemoglobin

AMI:

Acute myocardial infarction

CNS:

Central nervous system

PM:

Postmortem

CO:

Carbon monoxide

References

  1. Mitchell SJ, Hine J, Vening J, Montague J, Evans S, Shaw KM, Frier BM, Heller SR, Russell-Jones DL (2017) A UK civil aviation authority protocol to allow pilots with insulin-treated diabetes to fly commercial aircraft. Lancet Diabetes Endocrinol 5:677–679

    Article  Google Scholar 

  2. Mills WD, DeJohn CA, Alaziz M (2017) The U.S. experience with waivers for insulin-treated pilots. Aerosp Med Hum Perform 88:34–41

    Article  Google Scholar 

  3. Vuorio A, Asmayawati S, Budowle B, Griffiths R, Strandberg T, Kuoppala J, Sajantila A (2017) General aviation pilots over 70 years old. Aerosp Med Hum Perform 88:142–145

    Article  Google Scholar 

  4. Fazeli Farsani S, Brodovicz K, Soleymanlou N, Marquard J, Wissinger E, Maiese BA (2017) Incidence and prevalence of diabetic ketoacidosis (DKA) among adults with type 1 diabetes mellitus (T1D): a systematic literature review. BMJ Open 7:e016587

    Article  Google Scholar 

  5. Chow E, Bernjak A, Williams S, Fawdry RA, Hibbert S, Freeman J, Sheridan PJ, Heller SR (2014) Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes 63:1738–1747

    Article  CAS  Google Scholar 

  6. Preis SR, Hwang SJ, Coady S, Pencina MJ, D’Agostino RBS, Savage PJ, Levy D, Fox CS (2009) Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation 119:1728–1735

    Article  Google Scholar 

  7. Grundy SM, Balady GJ, Criqui MH, Fletcher G, Greenland P, Hiratzka LF, Houston-Miller N, Kris-Etherton P, Krumholz HM, LaRosa J, Ockene IS, Pearson TA, Reed J, Washington R, Smith SC, Jr (1998) Primary prevention of coronary heart disease: guidance from Framingham: a statement for healthcare professionals from the AHA Task Force on Risk Reduction. American Heart Association. Circulation 97:1876–1887

    Article  CAS  Google Scholar 

  8. Huxley R, Barzi F, Woodward M (2006) Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 332:73–78

    Article  Google Scholar 

  9. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234

    Article  CAS  Google Scholar 

  10. Chen R, Ovbiagele B, Feng W (2016) Diabetes and stroke: epidemiology, pathophysiology, pharmaceuticals and outcomes. Am J Med Sci 351:380–386

    Article  Google Scholar 

  11. Walta AM, Keltanen T, Lindroos K, Sajantila A (2016) The usefulness of point-of-care (POC) tests in screening elevated glucose and ketone body levels postmortem. Forensic Sci Int 266:299–303

    Article  CAS  Google Scholar 

  12. Khuu HM, Robinson CA, Brissie RM, Konrad RJ (1999) Postmortem diagnosis of unsuspected diabetes mellitus established by determination of decedent’s hemoglobin A1c level. J Forensic Sci 44:643–646

    Article  CAS  Google Scholar 

  13. Canfield DV, Chaturvedi AK, Boren HK, Veronneau SJ, White VL (2001) Abnormal glucose levels found in transportation accidents. Aviat Space Environ Med 72:813–815

    PubMed  CAS  Google Scholar 

  14. Chaturvedi AK, Smith DR, Soper JW, Canfield DV, Whinnery JE (2003) Characteristics and toxicological processing of postmortem pilot specimens* from fatal civil aviation accidents. Aviat Space Environ Med 74:252–259

    PubMed  Google Scholar 

  15. Keltanen T, Sajantila A, Palo JU, Partanen T, Valonen T, Lindroos K (2013) Assessment of Traub formula and ketone bodies in cause of death investigations. Int J Legal Med 127:1131–1137

    Article  Google Scholar 

  16. Keltanen T, Sajantila A, Valonen T, Vanhala T, Lindroos K (2013) Measuring postmortem glycated hemoglobin—a comparison of three methods. Leg Med (Tokyo) 15:72–78

    Article  CAS  Google Scholar 

  17. Chaturvedi AK, Botch SR, Canfield DV, Forster EM (2009) Vitreous fluid and/or urine glucose concentrations in 1335 civil aviation accident pilot fatalities. J Forensic Sci 54:715–720

    Article  CAS  Google Scholar 

  18. Karlovsek MZ (2004) Diagnostic values of combined glucose and lactate values in cerebrospinal fluid and vitreous humour—our experiences. Forensic Sci Int 146(Suppl):S19–S23

    Article  CAS  Google Scholar 

  19. Zilg B, Alkass K, Berg S, Druid H (2009) Postmortem identification of hyperglycemia. Forensic Sci Int 185:89–95

    Article  CAS  Google Scholar 

  20. Belsey SL, Flanagan RJ (2016) Postmortem biochemistry: current applications. J Forensic Legal Med 41:49–57

    Article  CAS  Google Scholar 

  21. Hess C, Musshoff F, Madea B (2011) Disorders of glucose metabolism–post mortem analyses in forensic cases: part I. Int J Legal Med 125:163–170

    Article  Google Scholar 

  22. Palmiere C, Lesta Mdel M, Sabatasso S, Mangin P, Augsburger M, Sporkert F (2012) Usefulness of postmortem biochemistry in forensic pathology: illustrative case reports. Leg Med (Tokyo) 14:27–35

    Article  CAS  Google Scholar 

  23. Hess C, Wollner K, Musshoff F, Madea B (2013) Detection of diabetic metabolism disorders post-mortem—forensic case reports on cause of death hyperglycaemia. Drug Test Anal 5:795–801

    Article  CAS  Google Scholar 

  24. Rasmussen J, Svedung I (2000) Proactive risk management in a dynamic society. Swedish Rescue Services Agency, Karlstad

    Google Scholar 

  25. Forouhi NG, Wareham NJ (2014) Epidemiology of diabetes. Medicine (Abingdon) 42:698–702

    Google Scholar 

  26. Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, Huang ES, Korytkowski MT, Munshi MN, Odegard PS, Pratley RE, Swift CS (2012) Diabetes in older adults. Diabetes Care 35:2650–2664

    Article  Google Scholar 

  27. Kugelberg FC, Jones AW (2007) Interpreting results of ethanol analysis in postmortem specimens: a review of the literature. Forensic Sci Int 165:10–29

    Article  CAS  Google Scholar 

  28. Nathan DM (2015) Diabetes: advances in diagnosis and treatment. JAMA 314:1052–1062

    Article  CAS  Google Scholar 

  29. Palmiere C, Bardy D, Mangin P, Werner D (2013) Postmortem diagnosis of unsuspected diabetes mellitus. Forensic Sci Int 226:160–167

    Article  CAS  Google Scholar 

  30. Hess C, Madea B, Daldrup T, Musshoff F (2013) Determination of hypoglycaemia induced by insulin or its synthetic analogues post mortem. Drug Test Anal 5:802–807

    Article  CAS  Google Scholar 

  31. Palmiere C (2015) Postmortem diagnosis of diabetes mellitus and its complications. Croat Med J 56:181–193

    Article  CAS  Google Scholar 

  32. Sydow K, Wiedfeld C, Musshoff F, Madea B, Tschoepe D, Stratmann B, Hess C (2018) Evaluation of 1,5-anhydro-d-glucitol in clinical and forensic urine samples. Forensic Sci Int 287:88–97

    Article  CAS  Google Scholar 

  33. Amiel SA, Dixon T, Mann R, Jameson K (2008) Hypoglycaemia in type 2 diabetes. Diabet Med 25:245–254

    Article  CAS  Google Scholar 

  34. Thevis M, Thomas A, Schanzer W, Ostman P, Ojanpera I (2012) Measuring insulin in human vitreous humour using LC-MS/MS. Drug Test Anal 4:53–56

    Article  CAS  Google Scholar 

  35. Ojanpera I, Sajantila A, Vinogradova L, Thomas A, Schanzer W, Thevis M (2013) Post-mortem vitreous humour as potential specimen for detection of insulin analogues by LC-MS/MS. Forensic Sci Int 233:328–332

    Article  CAS  Google Scholar 

  36. Jones AW, Kugelberg FC, Holmgren A, Ahlner J (2011) Drug poisoning deaths in Sweden show a predominance of ethanol in mono-intoxications, adverse drug-alcohol interactions and poly-drug use. Forensic Sci Int 206:43–51

    Article  CAS  Google Scholar 

  37. Jones AW, Holmgren A, Ahlner J (2016) Post-mortem concentrations of drugs determined in femoral blood in single-drug fatalities compared with multi-drug poisoning deaths. Forensic Sci Int 267:96–103

    Article  CAS  Google Scholar 

Download references

Funding

The work was funded by Academy of Finland (ISJ, projects 25013080481 and 25013142041), Finnish Medical Foundation (ISJ), Tampere Tuberculosis Foundation (ISJ), and Sigrid Juselius Foundation (ISJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Sajantila.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junttila, I.S., Vuorio, A., Budowle, B. et al. Challenges in investigation of diabetes-related aviation fatalities—an analysis of 1491 subsequent aviation fatalities in USA during 2011–2016. Int J Legal Med 132, 1713–1718 (2018). https://doi.org/10.1007/s00414-018-1879-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-018-1879-4

Keywords

Navigation