Skip to main content

Advertisement

Log in

Disorders of glucose metabolism–post mortem analyses in forensic cases: part I

  • Review Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In developed countries, diabetes is one of the ten most common causes of death. Post mortem diagnosis of glucose metabolism disorders can be difficult and vague because of the lack of characteristic morphological findings. Reviews of the literature are presented concerning biochemical problems in cases of unclear hyper- or hypoglycemia. After repetition of causes, frequency, and mortality of diabetic metabolism disorders, we give hints for the detection of diabetic ketoacidosis, hyperosmolar coma, insulinoma, and insulin- or oral diabetic-induced hypoglycemia. The first part discusses the analytes glucose and lactate, glycated proteins and oral antidiabetics, with special regard to their matrices post mortem, to reference concentrations, stability data and to analytic procedures that should be used in clinical or toxicological laboratories to detect diabetic metabolism disorders after death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Federal Statistic Office Germany press release 454 (2007) Zahl der Diabetiker leicht ruecklaeufig. http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Presse/pm/2007/11/PD07__454__232,templateId=renderPrint.psml. Accessed 13 april 2010

  2. Hess C, Musshoff F, Madea B (2010) Disorders of glucose metabolism – post mortem analyses in forensic cases – Part II. Int J Leg Med. Submitted

  3. Thomas L (2000) Labor und Diagnose. Indikationen und Bewertung von Laborbefunden für die medizinische Diagnostik. 5.erweiterte Auflage. TH Books, Frankfurt

    Google Scholar 

  4. Faber OK, Binder C (1986) C-peptide: an index of insulin secretion. Diabetes Metab Rev 2:331–345

    PubMed  CAS  Google Scholar 

  5. Karam JH (2007) Pancreatic hormones and diabetes mellitus In: Greenspan FS, Gardner DG (ed.) Basic and Clinical Endocrinology 8th edn, chapter 18

  6. Galloway JA, Hooper SA, Spradlin CT, Howey DC, Frank BH, Bowsher RR, Anderson JH (1992) Biosynthetic human proinsulin. Review of chemistry, in vitro and in vivo receptor binding, animal and human pharmacology studies, and clinical trial experience. Diab Care 15:666–692

    CAS  Google Scholar 

  7. Lehnert H, Schuster HP (1999) In: Innere Medizin. Thieme Verlag. pp 136–137

  8. Marks V, Teale JD (1993) Hypoglycaemia in the adult. Baillières Clin Endocrinol Metab 7:705–729

    PubMed  CAS  Google Scholar 

  9. Butler PC, Rizza RA (1989) Regulation of carbohydrate metabolism and response to hypoglycemia. Endocrinol Metab Clin North Am 18:1–25

    PubMed  CAS  Google Scholar 

  10. Nilsson A, Tideholm B, Kalen J, Katzman P (1988) Incidence of severe hypoglycemia and its causes in insulin-treated diabetics. Acta Med Scand 224:257–262

    PubMed  CAS  Google Scholar 

  11. MacLeod KM, Hepburn DA, Frier BM (1993) Frequency and morbidity of severe hypoglycaemia in insulin-treated diabetic patients. Diabet Med 10:238–245

    PubMed  CAS  Google Scholar 

  12. Lai MW, Klein-Schwartz W, Rodgers GC, Abrams JY, Haber DA, Bronstein AC, Wruk KM (2006) 2005 Annual Report of the American Association of Poison Control Centers' national poisoning and exposure database. Clin Toxicol (Phila) 44:803–932

    CAS  Google Scholar 

  13. Bronstein AC, Spyker DA, Cantilena LR Jr, Green JL, Rumack BH, Heard SE (2008) 2007 Annual Report of the American Association of Poison Control Centers' National Poison Data System (NPDS): 25th Annual Report. Clin Toxicol (Phila) 46:927–1057

    Google Scholar 

  14. Hirsch IB (2005) Insulin analogues. N Engl J Med 352:174–183

    PubMed  CAS  Google Scholar 

  15. Rodriguez Perez C, Lizondo Escuder A, Lopez Garcia MJ, Escriva Cholbi L, Alpera Lacruz R, Collado Perez C (2008) A study of variability in glycaemia in children and adolescents with diabetes mellitus type 1 on treatment with insulin glargine. An Pediatr (Barc) 69:426–431

    CAS  Google Scholar 

  16. Fletcher SM (1983) Insulin. A forensic primer. J Forensic Sci Soc 23:5–17

    PubMed  CAS  Google Scholar 

  17. Arem R, Zoghbi W (1985) Insulin overdose in eight patients: insulin pharmacokinetics and review of the literature. Medicine (Baltimore) 64:323–332

    CAS  Google Scholar 

  18. Walfish PG, Feig DS, Bauman WA (1987) Factitious hyperinsulinemic hypoglycemia: confirmation of the diagnosis by a species-specific insulin radioimmunoassay. J Endocrinol Invest 10:601–604

    PubMed  CAS  Google Scholar 

  19. Grunberger G, Weiner JL, Silverman R, Taylor S, Gorden P (1988) Factitious hypoglycemia due to surreptitious administration of insulin. Diagnosis, treatment, and long-term follow-up. Ann Intern Med 108:252–257

    PubMed  CAS  Google Scholar 

  20. Kaminer Y, Robbins DR (1988) Attempted suicide by insulin overdose in insulin-dependent diabetic adolescents. Pediatrics 81:526–528

    PubMed  CAS  Google Scholar 

  21. Lebowitz MR, Blumenthal SA (1993) The molar ratio of insulin to C-peptide. An aid to the diagnosis of hypoglycemia due to surreptitious (or inadvertent) insulin administration. Arch Intern Med 153:650–655

    PubMed  CAS  Google Scholar 

  22. Patel F (1995) Successful suicide by insulin injection in a non-diabetic. Med Sci Law 35:181–182

    PubMed  CAS  Google Scholar 

  23. Waickus CM, de Bustros A, Shakil A (1999) Recognizing factitious hypoglycemia in the family practice setting. J Am Board Fam Pract 12:133–136

    PubMed  CAS  Google Scholar 

  24. Giordano BP, Rainwater NG (1986) Factitious hypoglycemia: case report. Diabetes Educ 12:37–39

    PubMed  CAS  Google Scholar 

  25. Colsky LC, Campo AE, Gonzalez-Blanco M (1985) Insulin and the suicidal patient. West J Med 143:679

    PubMed  CAS  Google Scholar 

  26. Critchley JA, Proudfoot AT, Boyd SG, Campbell IW, Brown NS, Gordon A (1984) Deaths and paradoxes after intentional insulin overdosage. Br Med J (Clin Res Ed) 289:225

    CAS  Google Scholar 

  27. Cooper AJ (1994) Attempted suicide using insulin by a non diabetic: a case study demonstrating the acute and chronic consequences of profound hypoglycemia. Can J Psychiatry 39:103–107

    PubMed  CAS  Google Scholar 

  28. Megarbane B, Deye BV, Sonneville R, Collet C, Launay JM, Baud FJ (2007) Intentional overdose with insulin: prognostic factors and toxicokinetic/toxicodynamic profiles. Crit Care 11:R115

    PubMed  Google Scholar 

  29. von Mach MA, Meyer S, Omogbehin B, Kann PH, Weilemann LS (2004) Epidemiological assessment of 160 cases of insulin overdose recorded in a regional poisons unit. Int J Clin Pharmacol Ther 42:277–280

    Google Scholar 

  30. Marks V (1999) Murder by insulin. Med Leg J 67:147–163

    PubMed  CAS  Google Scholar 

  31. Marks V (2009) Insulin murders. Med Leg J 77:39–47

    PubMed  Google Scholar 

  32. Lindquist O, Rammer L (1975) Insulin in post-mortem blood. Z Rechtsmed 75:275–277

    PubMed  CAS  Google Scholar 

  33. Kernbach-Wighton G, Puschel K (1998) On the phenomenology of lethal applications of insulin. Forensic Sci Int 93:61–73

    PubMed  CAS  Google Scholar 

  34. Ferner RE, Neil HA (1988) Sulphonylureas and hypoglycaemia. Br Med J (Clin Res Ed) 296:949–950

    CAS  Google Scholar 

  35. Amiel SA, Dixon T, Mann R, Jameson K (2008) Hypoglycaemia in Type 2 diabetes. Diabet Med 25:245–254

    PubMed  CAS  Google Scholar 

  36. Holstein A, Plaschke A, Egberts EH (2001) Lower incidence of severe hypoglycaemia in patients with type 2 diabetes treated with glimepiride versus glibenclamide. Diabetes Metab Res Rev 17:467–473

    PubMed  CAS  Google Scholar 

  37. Holstein A, Plaschke A, Hammer C, Egberts EH (2003) Characteristics and time course of severe glimepiride- versus glibenclamide-induced hypoglycaemia. Eur J Clin Pharmacol 59:91–97

    PubMed  CAS  Google Scholar 

  38. Asplund K, Wiholm BE, Lithner F (1983) Glibenclamide-associated hypoglycaemia: a report on 57 cases. Diabetologia 24:412–417

    PubMed  CAS  Google Scholar 

  39. Wark G (2009) How to look for insulin etc. SAS Peptide Hormone Section, RSCH. Guildford Peptide Hormones Scheme

  40. Nakayama S, Hirose T, Watada H, Tanaka Y, Kawamori R (2005) Hypoglycemia following a nateglinide overdose in a suicide attempt. Diab Care 28:227–228

    Google Scholar 

  41. Winter WE (1999) Evaluation of hypoglycemia and hyperglycemia. In: Jialal I, Winter WE, Chan DW (eds) Handbook of diagnostic endocrinology. AACC, Washington, pp 157–158

    Google Scholar 

  42. Young DS (2000) Effects of Drugs on Clinical Laboratoty tests. Vol. 1.Washington. AACC Press 3:349–371

    Google Scholar 

  43. Lund E, Wamberg E (1964) Phenylketonuria. A review with special reference to diagnostic methods. Ugeskr Laeger 126:497–505

    PubMed  CAS  Google Scholar 

  44. Coe JI (1977) Postmortem chemistry of blood, cerebrospinal fluid, and vitreous humor. Leg Med Annu 1976:55–92

    PubMed  CAS  Google Scholar 

  45. Forrest AR (1993) ACP Broadsheet no 137: April 1993. Obtaining samples at post mortem examination for toxicological and biochemical analyses. J Clin Pathol 46:292–296

    PubMed  CAS  Google Scholar 

  46. Gormsen H, Lund A (1985) The diagnostic value of postmortem blood glucose determinations in cases of diabetes mellitus. Forensic Sci Int 28:103–107

    PubMed  CAS  Google Scholar 

  47. Sturner WQ, Gantner GE Jr (1964) Postmortem vitreous glucose determinations. J Forensic Sci 9:485–491

    PubMed  CAS  Google Scholar 

  48. Coe JI (1969) Postmortem chemistries on human vitreous humor. Am J Clin Pathol 51:741–750

    PubMed  CAS  Google Scholar 

  49. Bray M, Luke JL, Blackbourne BD (1983) Vitreous humor chemistry in deaths associated with rapid chilling and prolonged freshwater immersion. J Forensic Sci 28:588–593

    PubMed  CAS  Google Scholar 

  50. Bray M (1984) The eye as a chemical indicator of environmental temperature at the time of death. J Forensic Sci 29:396–403

    PubMed  CAS  Google Scholar 

  51. Bray M (1984) The effect of chilling, freezing, and rewarming on the postmortem chemistry of vitreous humor. J Forensic Sci 29:404–411

    PubMed  CAS  Google Scholar 

  52. Kernbach G, Puschel K, Brinkmann B (1986) Biochemical measurements of glucose metabolism in relation to cause of death and postmortem effects. Z Rechtsmed 96:199–213

    PubMed  CAS  Google Scholar 

  53. Traub F (1969) Methode zur Erkennung von tödlichen Zuckerstoffwechselstörungen an der Leiche (Diabetes mellitus und Hypoglykämie). Zbl Allg Path Path Anat 112:390–399

    CAS  Google Scholar 

  54. Coe JI (1977) Postmortem chemistry of blood, cerebrospinal fluid, and vitreous humor. Leg Med Annu 1976:55–92

    PubMed  CAS  Google Scholar 

  55. Kernbach G, Puschel K, Brinkmann B (1986) Biochemical measurements of glucose metabolism in relation to cause of death and postmortem effects. Z Rechtsmed 96:199–213

    PubMed  CAS  Google Scholar 

  56. Osuna E, Garcia-Villora A, Perez-Carceles M, Conejero J, Maria Abenza J, Martinez P, Luna A (2001) Glucose and lactate in vitreous humor compared with the determination of fructosamine for the postmortem diagnosis of diabetes mellitus. Am J Forensic Med Pathol 22:244–249

    PubMed  CAS  Google Scholar 

  57. Osuna E, Garcia-Villora A, Perez-Carceles MD, Conejero J, Abenza JM, Martinez P, Luna A (1999) Vitreous humor fructosamine concentrations in the autopsy diagnosis of diabetes mellitus. Int J Legal Med 112:275–279

    PubMed  CAS  Google Scholar 

  58. Vivero G, Vivero-Salmeron G, Perez Carceles Bedate A, Luna A, Osuna E (2008) Combined determination of glucose and fructosamine in vitreous humor as a post-mortem tool to identify antemortem hyperglycemia. Rev Diabet Stud 5:220–224

    PubMed  Google Scholar 

  59. Gressner A, Arndt T (2006) Lexikon der Medizinischen Laboratoriumsdiagnostik. Band 1: Klinische Chemie. Springer Verlag, Berlin

    Google Scholar 

  60. Sippel H, Mottonen M (1982) Combined glucose and lactate values in vitreous humour for postmortem diagnosis of diabetes mellitus. Forensic Sci Int 19:217–222

    PubMed  CAS  Google Scholar 

  61. De Letter EA, Piette MH (1998) Can routinely combined analysis of glucose and lactate in vitreous humour be useful in current forensic practice? Am J Forensic Med Pathol 19:335–342

    PubMed  Google Scholar 

  62. Peretz DI, McGregor M, Dossetor JB (1964) Lactatacidosis: a clinically significant aspect of shock. Can Med Assoc J 90:673–5

    PubMed  CAS  Google Scholar 

  63. Kleine TO, Baerlocher K, Niederer V, Keller H, Reutter F, Tritschler W, Bablok W (1979) Diagnostic significance of lactate concentration in CSF in patients with meningitis (author's transl). Dtsch Med Wochenschr 104:553–557

    PubMed  CAS  Google Scholar 

  64. Hindle EJ, Rostron GM, Gatt JA (1985) The diagnostic value of glycated haemoglobin levels in post-mortem blood. Ann Clin Biochem 22:144–147

    PubMed  Google Scholar 

  65. Astles R, Williams CP, Sedor F (1994) Stability of plasma lactate in vitro in the presence of antiglycolytic agents. Clin Chem 40:1327–1330

    PubMed  CAS  Google Scholar 

  66. Liss E, Bechtel S (1990) Improvement of glucose preservation in blood samples. J Clin Chem Clin Biochem 28:689–690

    PubMed  CAS  Google Scholar 

  67. Rick W (1977) Klinische Chemie und Mikroskopie, 5th edn. Springer Verlag, Berlin

    Google Scholar 

  68. Müller B (2005) In: Madea B, Musshoff F (eds) Rechtsmedizin. Springer Verlag, Berlin

    Google Scholar 

  69. Bunn HF (1981) Nonenzymatic glycosylation of protein: relevance to diabetes. Am J Med 70:325–330

    PubMed  CAS  Google Scholar 

  70. Svendsen PA, Lauritzen T, Soegaard U, Nerup J (1982) Glycosylated haemoglobin and steady-state mean blood glucose concentration in Type 1 (insulin-dependent) diabetes. Diabetologia 23:403–405

    PubMed  CAS  Google Scholar 

  71. Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ (2008) Translating the A1C assay into estimated average glucose values. Diab Care 31:1473–1478

    CAS  Google Scholar 

  72. The American Diabetes Association, European Association for the Study of Diabetes, International Federation of Clinical Chemistry and Laboratory Medicine, the International Diabetes Federation (2007) Consensus statement on the worldwide standardization of the hemoglobin A1C measurement. Diab Care 30:2399–2400

    Google Scholar 

  73. Nordin G, Dybkaer R (2007) Recommendation for term and measurement unit for "HbA1c". Clin Chem Lab Med 45:1081–1082

    PubMed  CAS  Google Scholar 

  74. Goldstein DE, Little RR, Lorenz RA, Malone JI, Nathan D, Peterson CM, Sacks DB (2004) Tests of glycemia in diabetes. Diab Care 27:1761–1773

    Google Scholar 

  75. Goldstein DE, Walker B, Rawlings SS, Hess RL, England JD, Peth SB, Hewett JE (1980) Hemoglobin A1c levels in children and adolescents with diabetes mellitus. Diab Care 3:503–507

    CAS  Google Scholar 

  76. Chen C, Glagov S, Mako M, Rochman H, Rubenstein AH (1983) Post-mortem glycosylated hemoglobin (HbA1c): evidence for a history of diabetes mellitus. Ann Clin Lab Sci 13:407–410

    PubMed  CAS  Google Scholar 

  77. Kernbach G, Brinkmann B (1983) Postmortem pathochemistry for the determination of the cause of death in diabetic coma. Pathologe 4:235–240

    PubMed  CAS  Google Scholar 

  78. Uemura K, Shintani-Ishida K, Saka NM, Ikegaya H, Kikuchi Y, Yoshida K (2008) Biochemical blood markers and sampling sites in forensic autopsy. J Forensic Leg Med 15:312–317

    PubMed  Google Scholar 

  79. Goulle JP, Lacroix C, Bouige D (2002) Glycated hemoglobin: a useful post-mortem reference marker in determining diabetes. Forensic Sci Int 128:44–49

    PubMed  CAS  Google Scholar 

  80. Winecker RE, Hammett-Stabler CA, Chapman JF, Ropero-Miller JD (2002) HbA1c as a postmortem tool to identify glycemic control. J Forensic Sci 47:1373–1379

    PubMed  CAS  Google Scholar 

  81. Kobold U, Jeppsson JO, Dulffer T, Finke A, Hoelzel W, Miedema K (1997) Candidate reference methods for hemoglobin A1c based on peptide mapping. Clin Chem 43:1944–1951

    PubMed  CAS  Google Scholar 

  82. Jeppsson JO, Kobold U, Barr J, Finke A, Hoelzel W, Hoshino T, Miedema K, Mosca A, Mauri P, Paroni R, Thienpont L, Umemoto M, Weykamp C (2002) Approved IFCC reference method for the measurement of HbA1c in human blood. Clin Chem Lab Med 40:78–89

    PubMed  CAS  Google Scholar 

  83. Lapolla A, Fedele D, Traldi P (2001) Diabetes and mass spectrometry. Diabetes Metab Res Rev 17:99–112

    PubMed  CAS  Google Scholar 

  84. Tahara Y, Shima K (1995) Kinetics of HbA1c, glycated albumin, and fructosamine and analysis of their weight functions against preceding plasma glucose level. Diab Care 18:440–447

    CAS  Google Scholar 

  85. Johnson RN, Metcalf PA, Baker J (1983) Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clin Chim Acta 127:87–95

    PubMed  CAS  Google Scholar 

  86. Goldstein DE, Little RR, Lorenz RA, Malone JI, Nathan D, Peterson CM (1995) Tests of glycemia in diabetes. Diab Care 18:896–909

    CAS  Google Scholar 

  87. Hill RP, Hindle EJ, Howey JE, Lemon M, Lloyd DR (1990) Recommendations for adopting standard conditions and analytical procedures in the measurement of serum fructosamine concentration. Ann Clin Biochem 27:413–424

    PubMed  CAS  Google Scholar 

  88. Cohen MP (1992) Perspective: measurement of circulating glycated proteins to monitor intermediate-term changes in glycaemic control. Eur J Clin Chem Clin Biochem 30:851–859

    PubMed  CAS  Google Scholar 

  89. Lloyd DR, Nott M, Marples J (1985) Comparison of serum fructosamine with glycosylated serum protein (determined by affinity chromatography) for the assessment of diabetic control. Diabet Med 2:474–478

    PubMed  CAS  Google Scholar 

  90. Gordon A, Glaser B, Wald M, Del Rio G, Della Casa L, Gross J, Cerasi E (1992) Glycosylated serum protein levels assayed with highly sensitive immunoradiometric assay accurately reflect glycemic control of diabetic patients. Diab Care 15:645–650

    CAS  Google Scholar 

  91. Baker J, Reid I, Holdaway I (1985) Serum fructosamine in patients with diabetes mellitus. N Z Med J 98:532–535

    PubMed  CAS  Google Scholar 

  92. Lemon M, Forrest AR (1986) Fructosamine activity of proteins in serum. Clin Chem 32:2101

    PubMed  CAS  Google Scholar 

  93. Koskinen P, Irjala K (1988) Stability of serum fructosamine during storage. Clin Chem 34:2545–2546

    PubMed  CAS  Google Scholar 

  94. Ritz S, Mehlan G, Martz W (1996) Postmortem diagnosis of diabetic metabolic derangement: elevated alpha 1-antitrypsin and haptoglobin glycosylation levels as an index of antemortem hyperglycemia. J Forensic Sci 41:94–100

    PubMed  CAS  Google Scholar 

  95. Boyle PJ, Justice K, Krentz AJ, Nagy RJ, Schade DS (1993) Octreotide reverses hyperinsulinemia and prevents hypoglycemia induced by sulfonylurea overdoses. J Clin Endocrinol Metab 76:752–756

    PubMed  CAS  Google Scholar 

  96. Gordon MR, Flockhart D, Zawadzki JK, Taylor T, Ramey JN, Eastman RC (1988) Hypoglycemia due to inadvertent dispensing of chlorpropamide. Am J Med 85:271–272

    PubMed  CAS  Google Scholar 

  97. Schulz M, Schmoldt A (2003) Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie 58:447–474

    PubMed  CAS  Google Scholar 

  98. TIAFT reference blood level list of therapeutic and toxic substances (2004) http://www.gtfch.org/cms/images/stories/Updated_TIAFT_list_202005.pdf, accessed 13 april 2010

  99. Mutschler E, Geisslinger G, Kroemer HK, Schäfer-Korting M (2001) Arzneimittelwirkungen, Lehrbuch der Pharmakologie und Toxikologie, 8th edn. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart

  100. Ho EN, Yiu KC, Wan TS, Stewart BD, Watkins KL (2004) Detection of anti-diabetics in equine plasma and urine by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 811:65–73

    PubMed  CAS  Google Scholar 

  101. Thevis M, Geyer H, Schanzer W (2005) Identification of oral antidiabetics and their metabolites in human urine by liquid chromatography/tandem mass spectrometry - a matter for doping control analysis. Rapid Commun Mass Spectrom 19:928–936

    PubMed  CAS  Google Scholar 

  102. Hess C, Musshoff F, Madea B (2010) Identification and validated quantification of oral hypoglycaemic drugs in plasma byelectrospray ionisation liquid chromatography – mass spectrometry. Submitted July 2010

Further reading

  1. Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M (2002) Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 48:436–472

    PubMed  CAS  Google Scholar 

  2. Chevenne D, Trivin F, Porquet D (1999) Insulin assays and reference values. Diabetes Metab 25:459–476

    PubMed  CAS  Google Scholar 

  3. Kitabchi AE, Umpierrez GE, Murphy MB, Barrett EJ, Kreisberg RA, Malone JI, Wall BM (2004) Hyperglycemic crises in diabetes. Diab Care 27(Suppl 1):S94–102

    Google Scholar 

  4. Eledrisi MS, Alshanti MS, Shah MF, Brolosy B, Jaha N (2006) Overview of the diagnosis and management of diabetic ketoacidosis. Am J Med Sci 331:243–251

    PubMed  Google Scholar 

  5. Kaufman FR, Halvorson M (1999) The treatment and prevention of diabetic ketoacidosis in children and adolescents with type I diabetes mellitus. Pediatr Ann 28:576–582

    PubMed  CAS  Google Scholar 

  6. Faich GA, Fishbein HA, Ellis SE (1983) The epidemiology of diabetic acidosis: a population-based study. Am J Epidemiol 117:551–558

    PubMed  CAS  Google Scholar 

  7. UK Prospective Diabetes Study Group (UKPDS) (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Google Scholar 

  8. Standards of medical care in diabetes (2006) Diab Care 29(Suppl 1):S4–42

    Google Scholar 

  9. Gouni-Berthold I, Krone W (2006) Diabetic ketoacidosis and hyperosmolar hyperglycemic state. Med Klin (Munich) 101(Suppl 1):100–105

    CAS  Google Scholar 

  10. Kitabchi AE, Umpierrez GE, Murphy MB, Barrett EJ, Kreisberg RA, Malone JI, Wall BM (2001) Management of hyperglycemic crises in patients with diabetes. Diab Care 24:131–153

    CAS  Google Scholar 

  11. Foster (1995) Diabetes mellitus. In: Schmailzl KJG (ed) Harrisons Innere Medizin 2, 13th edn. Blackwell, Berlin Vienna Oxford, pp 2314–2338

    Google Scholar 

  12. Radermacher L, D'Orio V (2005) Metabolic emergencies related to diabetes mellitus: ketoacidosis and hyperosmolar state. Rev Méd Liège 60:466–471

    PubMed  CAS  Google Scholar 

  13. Fishbein H, Palumbo PJ (1995) Acute metabolic complications in diabetes. In: National Diabetes Data Group. Diabetes in America. Bethesda (MD): National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. pp 283–291

  14. Kadis P, Balazic J, Ferlan-Marolt V (1999) Alcoholic ketoacidosis: a cause of sudden death of chronic alcoholics. Forensic Sci Int 103:S53–S59

    Google Scholar 

  15. Nilsson A, Tideholm B, Kalen J, Katzman P (1988) Incidence of severe hypoglycemia and its causes in insulin-treated diabetics. Acta Med Scand 224:257–262

    PubMed  CAS  Google Scholar 

  16. The DCCT Research Group (1991) Epidemiology of severe hypoglycemia in the diabetes control and complications trial. Am J Med 90:450–459

    Google Scholar 

  17. Schwartz NS, Clutter WE, Shah SD, Cryer PE (1987) Glycemic thresholds for activation of glucose counterregulatory systems are higher than the threshold for symptoms. J Clin Invest 79:777–781

    PubMed  CAS  Google Scholar 

  18. Mitrakou A, Ryan C, Veneman T, Mokan M, Jenssen T, Kiss I, Durrant J, Cryer P, Gerich J (1991) Hierarchy of glycemic thresholds for counterregulatory hormone secretion, symptoms, and cerebral dysfunction. Am J Physiol 260:E67–E74

    PubMed  CAS  Google Scholar 

  19. Fanelli C, Pampanelli S, Epifano L, Rambotti AM, Ciofetta M, Modarelli F, Di Vincenzo A, Annibale B, Lepore M, Lalli C (1994) Relative roles of insulin and hypoglycaemia on induction of neuroendocrine responses to, symptoms of, and deterioration of cognitive function in hypoglycaemia in male and female humans. Diabetologia 37:797–807

    PubMed  CAS  Google Scholar 

  20. Marks V (2006) Hypoglycaemia: insulin and conflicts with the law. Br J Diabetes Vasc Dis 6:281–285

    CAS  Google Scholar 

  21. Coe JI (1974) Postmortem chemistry: practical considerations and a review of the literature. J Forensic Sci 19:13–32

    PubMed  CAS  Google Scholar 

  22. Coe JI (1993) Postmortem chemistry update. Emphasis on forensic application. Am J Forensic Med Pathol 14:91–117

    PubMed  CAS  Google Scholar 

  23. Forrest AR (1993) ACP Broadsheet no 137: April 1993. Obtaining samples at post mortem examination for toxicological and biochemical analyses. J Clin Pathol 46:292–296

    PubMed  CAS  Google Scholar 

  24. Sturner WQ, Gantner GE Jr (1964) Postmortem vitreous glucose determinations. J Forensic Sci 9:485–491

    PubMed  CAS  Google Scholar 

  25. Peclet C, Picotte P, Jobin F (1994) The use of vitreous humor levels of glucose, lactic acid and blood levels of acetone to establish antemortem hyperglycemia in diabetics. Forensic Sci Int 65:1–6

    PubMed  CAS  Google Scholar 

  26. Leahy MS, Farber ER (1967) Postmortem chemistry of human vitreous humor. J Forensic Sci 12:214–222

    PubMed  CAS  Google Scholar 

  27. Karlovsek M (2004) Diagnostic values of combined glucose and lactate values in cerebrospinal fluid and vitreous humour - our experiences. Forensic Sci Int 146(Suppl):S19–23

    PubMed  CAS  Google Scholar 

  28. Ritz S, Kaatsch HJ (1990) Postmortem diagnosis of fatal diabetic metabolic dyscontrol: what is the significance of cerebrospinal fluid and vitreous body total values and HbA1? Pathologe 11:158–165

    PubMed  CAS  Google Scholar 

  29. Kugler J, Oehmichen M (1986) Studies of glucose metabolism in the cadaver. Beitr Gerichtl Med 44:185–8

    PubMed  CAS  Google Scholar 

Download references

Integrity of research

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Hess.

Additional information

Cornelius Hess and Frank Musshoff contributed equally to this work.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Online Resource 1

(DOC 25.0 kb)

Online Resource 2

(DOC 113 kb)

Online Resource 3

(DOC 35.0 kb)

Online Resource 4

(DOC 27.5 kb)

Online Resource 5

(DOC 26.5 kb)

Online Resource 6

(DOC 35.0 kb)

Online Resource 7

(DOC 34.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, C., Musshoff, F. & Madea, B. Disorders of glucose metabolism–post mortem analyses in forensic cases: part I. Int J Legal Med 125, 163–170 (2011). https://doi.org/10.1007/s00414-010-0509-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-010-0509-6

Keywords

Navigation