Skip to main content

Advertisement

Log in

Substitution mutation induced migration anomaly of a D10S2325 allele on capillary electrophoresis

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Microvariants of short tandem repeat (STR) have been reported for different commercially available multiplex STR systems. Sequence length variations caused by variant mechanisms were the central cause of these abnormal phenomena. Here, we reported a novel electrophoretic mobility of the variant allele 13 of D10S2325 in the Investigator HDplexTM Kit, which was induced by a special sequence structure containing a poly-G tract (ttg ggg ggg) as a result of only one single base substitution in the flanking regions of the core repeat structure. This migration anomaly can pose a potential risk of wrong designation of some off-ladder alleles in STR loci. Furthermore, population genetic data of the Investigator HDplexTM Kit in the Chinese Han population are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

STR:

Short tandem repeat

OL:

Off-ladder

CODIS:

Combined DNA Index System

ESS:

European Standard Set

CE:

Capillary electrophoresis

POP-4:

Performance optimized polymer 4

ISFG:

International Society of Forensic Genetics

References

  1. Gill P, Fereday L, Morling N, Schneider PA (2006) New multiplexes for Europe—amendments and clarification of strategic development. Forensic Sci Int 163:155–157

    Article  PubMed  Google Scholar 

  2. Hares DR (2012) Expanding the CODIS core loci in the United States. Forensic Sci Int Genet 6:e52–e54

    Article  PubMed  CAS  Google Scholar 

  3. Grubwieser P, Zimmermann B, Niederstatter H, Pavlic M, Steinlechner M, Parson W (2007) Evaluation of an extended set of 15 candidate STR loci for paternity and kinship analysis in an Austrian population sample. Int J Legal Med 121:85–89

    Article  PubMed  CAS  Google Scholar 

  4. Lu DJ, Liu QL, Zhao H (2011) Genetic data of nine non-CODIS STRs in Chinese Han population from Guangdong Province, Southern China. Int J Legal Med 125:133–137

    Article  PubMed  Google Scholar 

  5. Westen AA, Haned H, Grol LJ, Harteveld J, van der Gaag KJ, de Knijff P, Sijen T (2012) Combining results of forensic STR kits: HDplex validation including allelic association and linkage testing with NGM and Identifiler loci. Int J Legal Med 126:781–789

    Article  PubMed  Google Scholar 

  6. Hwa HL, Chang YY, Lee JC, Lin CY, Yin HY, Tseng LH, Su YN, Ko TM (2012) Fifteen non-CODIS autosomal short tandem repeat loci multiplex data from nine population groups living in Taiwan. Int J Legal Med 126:671–675

    Article  PubMed  Google Scholar 

  7. Tillmar AO, Nilsson H, Kling D, Montelius K (2012) Analysis of Investigator HDplex markers in Swedish and Somali populations. Forensic Sci Int Genet. doi:10.1016/j.fsigen.2012.08.006

  8. Schmid D, Anslinger K, Rolf B (2005) Allele frequencies of the ACTBP2 (=SE33), D18S51, D8S1132, D12S391, D2S1360, D3S1744, D5S2500, D7S1517, D10S2325 and D21S2055 loci in a German population sample. Forensic Sci Int 151:303–305

    Article  PubMed  CAS  Google Scholar 

  9. Becker D, Bender K, Edelmann J, Gotz F, Henke L, Hering S, Hohoff C, Hoppe K, Klintschar M, Muche M, Rolf B, Szibor R, Weirich V, Jung M, Brabetz W (2007) New alleles and mutational events at 14 STR loci from different German populations. Forensic Sci Int Genet 1:232–237

    Article  PubMed  Google Scholar 

  10. Kuzniar P, Jastrzebska E, Ploski R (2006) Validation of nine non-CODIS STR loci for forensic use in a population from Central Poland. Forensic Sci Int 159:258–260

    Article  PubMed  CAS  Google Scholar 

  11. Pepinski W, Niemcunowicz-Janica A, Skawronska M, Janica J (2011) Polymorphism of 11 non-CODIS STRs in a population sample of Lithuanian minority residing in northeastern Poland. Forensic Sci Int Genet 5:e37

    Article  PubMed  CAS  Google Scholar 

  12. Kline MC, Hill CR, Decker AE, Butler JM (2011) STR sequence analysis for characterizing normal, variant, and null alleles. Forensic Sci Int Genet 5:329–332

    Article  PubMed  CAS  Google Scholar 

  13. Crouse CA, Rogers S, Amiott E, Gibson S, Masibay A (1999) Analysis and interpretation of short tandem repeat microvariants and three-banded allele patterns using multiple allele detection systems. J Forensic Sci 44:87–94

    PubMed  CAS  Google Scholar 

  14. Kim SH, Kim NY, Kim KS, Kim JJ, Park JT, Chung KW, Han MS, Kim W (2009) Population genetics and mutational events at 6 Y-STRs in Korean population. Forensic Sci Int Genet 3:e53–e54

    Article  PubMed  CAS  Google Scholar 

  15. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    PubMed  CAS  Google Scholar 

  16. Bär W, Brinkmann B, Budowle B, Carracedo A, Gill P, Lincoln P, Mayr W, Olaisen B (1997) DNA recommendations: further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. Int J Legal Med 110:175–176

    Article  PubMed  Google Scholar 

  17. Olaisen B, Bar W, Brinkmann B, Budowle B, Carracedo A, Gill P, Lincoln P, Mayr WR, Rand S (1998) DNA recommendations 1997 of the International Society for Forensic Genetics. Vox Sang 74:61–63

    Article  PubMed  CAS  Google Scholar 

  18. Schneider PM (2007) Scientific standards for studies in forensic genetics. Forensic Sci Int 165:238–243

    Article  PubMed  CAS  Google Scholar 

  19. Zhao F, Wu XY, Cai GQ, Xu CC (2003) The applications of modified-powerstates software in the forensic biostatistics. Chinese J of Forensic Med 18:297–312 (article in Chinese)

    Google Scholar 

  20. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  21. Wang DY, Green RL, Lagacé RE, Oldroyd NJ, Hennessy LK, Mulero JJ (2012) Identification and secondary structure analysis of a region affecting electrophoretic mobility of the STR locus SE33. Forensic Sci Int Genet 6:310–316

    Article  PubMed  CAS  Google Scholar 

  22. Davis C, Ge J, King J, Malik N, Weirich V, Eisenberg AJ, Budowle B (2012) Variants observed for STR locus SE33: a concordance study. Forensic Sci Int Genet 6:494–497

    Article  PubMed  CAS  Google Scholar 

  23. Hwa HL, Chang YY, Lee JC, Yin HY, Tseng LH, Su YN, Ko TM (2011) Fourteen non-CODIS autosomal short tandem repeat loci multiplex data from Taiwanese. Int J Legal Med 125:219–226

    Article  PubMed  Google Scholar 

  24. Hou YP, Tang JP, Dong JG, Ji Q, Li YB, Wu J, Zhang SZ, Zhang J, Yan J, Walter H, Prinz M (2001) Further characterization and population data for the pentanucleotide STR polymorphism D10S2325. Forensic Sci Int 123:107–110

    Article  PubMed  CAS  Google Scholar 

  25. Lee DH, Han JS, Lee WG, Lee SW, Rho HM (1998) Quadruplex amplification of polymorphic STR loci in a Korean population. Int J Legal Med 111:320–322

    Article  PubMed  CAS  Google Scholar 

  26. Wiegand P, Lareu MV, Schurenkamp M, Kleiber M, Brinkmann B (1999) D18S535, D1S1656 and D10S2325: three efficient short tandem repeats for forensic genetics. Int J Legal Med 112:360–363

    Article  PubMed  CAS  Google Scholar 

  27. Pepinski W, Niemcunowicz-Janica A, Skawronska M, Koc-Zorawska E, Janica J, Soltyszewski I (2004) Allele distribution of 15 STR loci in a population sample of the Lithuanian minority residing in the Northeastern Poland. Forensic Sci Int 144:65–67

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Twelfth Five-Year Plan of the National Science and Technology Support Program of China (no. 2012BAK16B01) and by the National Natural Science Foundation of China (no. 81072510 and no. 81273349). The Investigator HDplex STR kits used for this study were kindly provided by Qiagen.

Conflict of interest

The authors have declared no conflict of interest.

Ethical standards

The authors declared that the experiments comply with the current laws of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter M. Schneider or Yi-Ping Hou.

Additional information

Ji Zhang contributed equally to this work and should be considered co-first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(see ESM_1) CE results of alleles 13 at locus D10S2325 detected on 3130 with POP-7 polymer. Each electropherogram is indicated with the sample name followed by corresponding base substitutions of allele 13. The mixture of sample X114 (A/G8, ttg ggg ggg acg gg) and Y58 (A/G10, ttg ggg gag gcg gg) showed a split peak with 0.54 base size difference. The arrow shows that the variant allele 13 with A/G8 was detected as an OL allele. These results indicate that the migration anomaly cannot be eliminated by using 3130 CE instrument with different separating gel. (JPEG 43 kb)

High resolution image (TIFF 2643 kb)

Supplementary Table 1

Allele distribution and forensic parameters from the Chinese Han population of 12 loci combined in the Investigator HDplex kit (n = 273) (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, PY., Zhang, J., Luo, HB. et al. Substitution mutation induced migration anomaly of a D10S2325 allele on capillary electrophoresis. Int J Legal Med 127, 363–368 (2013). https://doi.org/10.1007/s00414-012-0779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-012-0779-2

Keywords

Navigation