Skip to main content
Log in

Combining results of forensic STR kits: HDplex validation including allelic association and linkage testing with NGM and Identifiler loci

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The autosomal short tandem repeat (STR) kits that are currently used in forensic science have a high discrimination power. However, this discrimination power is sometimes not sufficient for complex kinship analyses or decreases when alleles are missing due to degradation of the DNA. The Investigator HDplex kit contains nine STRs that are additional to the commonly used forensic markers, and we validated this kit to assist human identification. With the increasing number of markers it becomes inevitable that forensic and kinship analyses include two or more STRs present on the same chromosome. To examine whether such markers can be regarded as independent, we evaluated the 30 STRs present in NGM, Identifiler and HDplex. Among these 30 markers, 17 syntenic STR pairs can be formed. Allelic association between these pairs was examined using 335 Dutch reference samples and no linkage disequilibrium was detected, which makes it possible to use the product rule for profile probability calculations in unrelated individuals. Linkage between syntenic STRs was studied by determining the recombination fraction between them in five three-generation CEPH families. The recombination fractions were compared to the physical and genetic distances between the markers. For most types of pedigrees, the kinship analyses can be performed using the product rule, and for those cases that require an alternative calculation method (Gill et al., Forensic Sci Int Genet 6:477–486, 2011), the recombination fractions as determined in this study can be used. Finally, we calculated the (combined) match probabilities, for the supplementary genotyping results of HDplex, NGM and Identifiler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gill P, Phillips C, McGovern C, Bright JA, Buckleton J (2011) An evaluation of potential allelic association between the STRs vWA and D12S391: implications in criminal casework and applications to short pedigrees. Forensic Sci Int Genet 6:477–486

    Article  PubMed  Google Scholar 

  2. Gill P, Fereday L, Morling N, Schneider PM (2006) New multiplexes for Europe-amendments and clarification of strategic development. Forensic Sci Int 163:155–157

    Article  PubMed  Google Scholar 

  3. Gill P, Fereday L, Morling N, Schneider PM (2006) The evolution of DNA databases - recommendations for new European STR loci. Forensic Sci Int 156:242–244

    Article  PubMed  CAS  Google Scholar 

  4. Phillips C, Fernandez-Formoso L, Garcia-Magarinos M, Porras L, Tvedebrink T, Amigo J, Fondevila M, Gomez-Tato A, varez-Dios J, Freire-Aradas A, Gomez-Carballa A, Mosquera-Miguel A, Carracedo A, Lareu MV (2011) Analysis of global variability in 15 established and 5 new European Standard Set (ESS) STRs using the CEPH human genome diversity panel. Forensic Sci Int Genet 5:155–169

    Article  PubMed  CAS  Google Scholar 

  5. Lobo I and Shaw K (2008) Thomas Hunt Morgan, Genetic Recombination, and Gene Mapping. Nature Education 1. http://www.nature.com/scitable/topicpage/thomas-hunt-morgan-genetic-recombination-and-gene-496

  6. Budowle B, Ge J, Chakraborty R, Eisenberg AJ, Green R, Mulero J, Lagace R, Hennessy L (2011) Population genetic analyses of the NGM STR loci. Int J Legal Med 125:101–109

    Article  PubMed  Google Scholar 

  7. Phillips C, Ballard D, Gill P, Court DS, Carracedo A, Lareu MV (2012) The recombination landscape around forensic STRs: accurate measurement of genetic distances between syntenic STR pairs using HapMap high density SNP data. Forensic Sci Int Genet 6:354–365

    Article  PubMed  CAS  Google Scholar 

  8. O'Connor KL, Tillmar AO (2012) Effect of linkage between vWA and D12S391 in kinship analysis. Forensic Sci Int Genet. doi:10.1016/j.fsigen.2012.03.008

  9. Westen AA, Matai AS, Laros JF, Meiland HC, Jasper M, de Leeuw WJ, de Knijff P, Sijen T (2009) Tri-allelic SNP markers enable analysis of mixed and degraded DNA samples. Forensic Sci Int Genet 3:233–241

    Article  PubMed  CAS  Google Scholar 

  10. Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48:1054–1064

    PubMed  CAS  Google Scholar 

  11. Park SDE (2001) Trypanotolerance in West African Cattle and the population genetic effects of selection. Dissertation, University of Dublin

  12. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  13. (2000) Genetic Identity PowerStats v12. Promega. http://www.promega.com/geneticidtools/powerstats/

  14. Black WC, Krafsur ES (1985) A FORTRAN program for the calculation and analysis of two-locus linkage disequilibrium coefficients. Theor Appl Genet 70:491–496

    Article  Google Scholar 

  15. Belkhir K, Borsa P, Chikhi L, Raufaste N, and Bonhomme F (2011) Genetix. Université Montpellier II, France. http://kimura.univ-montp2.fr/genetix/. Accessed 1 Nov 2011

  16. Lathrop GM, Lalouel JM, Julier C, Ott J (1984) Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A 81:3443–3446

    Article  PubMed  CAS  Google Scholar 

  17. Li W, Haghighi VFG, Matise TC, Ott J (1996) Using web browser as the graphical user interface for linkage analysis. Am J Hum Genet supplement to vol 59:A307

  18. Westen AA, Nagel JH, Benschop CC, Weiler NE, de Jong BJ, Sijen T (2009) Higher capillary electrophoresis injection settings as an efficient approach to increase the sensitivity of STR typing. J Forensic Sci 54:591–598

    Article  PubMed  CAS  Google Scholar 

  19. Benschop CC, van der Beek CP, Meiland HC, van Gorp AG, Westen AA, Sijen T (2011) Low template STR typing: effect of replicate number and consensus method on genotyping reliability and DNA database search results. Forensic Sci Int Genet 5:316–328

    Article  PubMed  CAS  Google Scholar 

  20. Dixon LA, Dobbins AE, Pulker HK, Butler JM, Vallone PM, Coble MD, Parson W, Berger B, Grubwieser P, Mogensen HS, Morling N, Nielsen K, Sanchez JJ, Petkovski E, Carracedo A, Sanchez-Diz P, Ramos-Luis E, Brion M, Irwin JA, Just RS, Loreille O, Parsons TJ, Syndercombe-Court SH, Stradmann-Bellinghausen B, Bender K, Gill P (2006) Analysis of artificially degraded DNA using STRs and SNPs - results of a collaborative European (EDNAP) exercise. Forensic Sci Int 164:33–44

    Article  PubMed  CAS  Google Scholar 

  21. Westen AA, Sijen T (2009) Degraded DNA sample analysis using DNA repair enzymes, mini-STRs and (tri-allelic) SNPs. Forensic Sci Int Genet Suppl Ser 2:505–509

    Article  Google Scholar 

  22. Fondevila M, Phillips C, Naveran N, Cerezo M, Rodriguez A, Calvo R, Fernandez LM, Carracedo A, Lareu MV (2008) Challenging DNA: assessment of a range of genotyping approaches for highly degraded forensic samples. Forensic Sci Int Genet Suppl Ser 1:26–28

    Article  Google Scholar 

  23. Gill P, Sparkes R, Kimpton C (1997) Development of guidelines to designate alleles using an STR multiplex system. Forensic Sci Int 89:185–197

    Article  PubMed  CAS  Google Scholar 

  24. Butler JM (2005) Forensic issues: degraded DNA, PCR inhibition, contamination, mixed samples and low copy number. Forensic DNA typing, 2nd edn. Elsevier, Amsterdam, pp 145–180

    Google Scholar 

  25. Gibb AJ, Huell AL, Simmons MC, Brown RM (2009) Characterisation of forward stutter in the AmpFlSTR SGM Plus PCR. Sci Justice 49:24–31

    Article  PubMed  CAS  Google Scholar 

  26. Westen AA, Grol LJW, Harteveld J, Matai AS, de Knijff P, Sijen T (2012) Assessment of the stochastic threshold, back- and forward stutter filters and low template techniques for NGM. Forensic Sci Int Genet. doi:10.1016/j.fsigen.2012.05.001

  27. Butler JM (2005) STR population database analyses. Forensic DNA typing, 2nd edn. Elsevier, Amsterdam, pp 473–496

    Google Scholar 

  28. Hedrick PW (2011) Linkage disequilibrium and recombination. Genetics of populations, 4th edn. Jones and Bartlett publishers, Sadbury, MA, pp 523–597

    Google Scholar 

  29. McEvoy BP, Powell JE, Goddard ME, Visscher PM (2011) Human population dispersal "Out of Africa" estimated from linkage disequilibrium and allele frequencies of SNPs. Genome Res 21:821–829

    Article  PubMed  CAS  Google Scholar 

  30. Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, Guerreiro R, Bras JM, Schymick JC, Hernandez DG, Traynor BJ, Simon-Sanchez J, Matarin M, Britton A, van de Leemput J, Rafferty I, Bucan M, Cann HM, Hardy JA, Rosenberg NA, Singleton AB (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451:998–1003

    Article  PubMed  CAS  Google Scholar 

  31. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallee C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe'er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Altshuler D, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Tsunoda T, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Zeng C, Zhao H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Wheeler DA, Yakub I, Gabriel SB, Onofrio RC, Richter DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler D, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L'Archeveque P, Bellemare G, Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  PubMed  CAS  Google Scholar 

  32. UniSTS database (2011) NCBI. http://www.ncbi.nlm.nih.gov/sites/entrez?db=unists. Accessed 24 Feb 2011

  33. Buard J, de Massy B (2007) Playing hide and seek with mammalian meiotic crossover hotspots. Trends Genet 23:301–309

    Article  PubMed  CAS  Google Scholar 

  34. Buckleton J, Triggs C (2006) The effect of linkage on the calculation of DNA match probabilities for siblings and half siblings. Forensic Sci Int 160:193–199

    Article  PubMed  CAS  Google Scholar 

  35. Nothnagel M, Schmidtke J, Krawczak M (2010) Potentials and limits of pairwise kinship analysis using autosomal short tandem repeat loci. Int J Legal Med 124:205–215

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research (NWO) within the framework of the Forensic Genomics Consortium Netherlands. The authors are grateful for the voluntary cooperation of the DNA donors for the Dutch reference set. We would like to thank Klaas Slooten and Ate Kloosterman for valuable discussions and Arnoud Kal for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titia Sijen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 20 kb)

ESM 2

(DOC 20 kb)

ESM 3

(DOC 165 kb)

ESM 4

(XLS 64 kb)

ESM 5

(DOC 47 kb)

ESM 6

(DOC 16 kb)

Supplementary Fig 1

HDplex performance. a Comparison between two methods to sensitise low template DNA profiling of a dilution series of pristine DNA007 in threefold. Black bars show the average percentage of detected alleles for the standard setting with 30 PCR cycles and 3 kV CE. Dark grey bars represent 30 PCR cycles with 9 kV CE and light grey bars 32 PCR cycles with 3 kV CE. Error bars show the standard deviation. b Comparison between NGM (dark grey bars) and HDplex (light grey bars) for time-wise UV-degraded hDNA. The experiment is performed in duplicate, and the average percentage of detected alleles is plotted against the UV degradation time. Error bars represent the standard deviation (when present) (JPEG 2829 kb)

High resolution image (TIFF 5885 kb)

Supplementary Fig. 2

Inter-locus balance (a) and intra-locus peak height ratio (b). Loci are ordered from shorter (left) to longer (right) amplicon sizes. Circles represent the median of the data points, boxes indicate the first to the third quartile and whiskers show the minimum and maximum values. The colour in which the markers are presented indicates the dye-channel (blue = 6-FAM, green = BTG and black = BTY). The horizontal line (at 1) in (a) represents perfect balance between loci, and the line in (b) indicates the preferred value (of 0.7) above which the data points should reside (JPEG 3583 kb)

High resolution image (TIFF 2233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westen, A.A., Haned, H., Grol, L.J.W. et al. Combining results of forensic STR kits: HDplex validation including allelic association and linkage testing with NGM and Identifiler loci. Int J Legal Med 126, 781–789 (2012). https://doi.org/10.1007/s00414-012-0724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-012-0724-4

Keywords

Navigation