Skip to main content
Log in

Factors affecting the detection and quantification of mitochondrial point heteroplasmy using Sanger sequencing and SNaPshot minisequencing

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Mitochondrial DNA analysis plays an important role in forensic science as well as in the diagnosis of mitochondrial diseases. The occurrence of two different nucleotides at the same sequence position can be caused either by heteroplasmy or by a mix of samples. The detection of superimposed positions in forensic samples and their quantification can provide additional information and might also be useful to identify a mixed sample. Therefore, the detection and visualization of heteroplasmy has to be robust and sensitive at the same time to allow for reliable interpretation of results and to avoid a loss of information. In this study, different factors influencing the analysis of mitochondrial heteroplasmy (DNA polymerases, PCR and sequencing primers, nucleotide incorporation, and sequence context) were examined. BigDye Sanger sequencing and the SNaPshot minisequencing were compared as to the accuracy of detection using artificially created mitochondrial DNA mixtures. Both sequencing strategies showed to be robust, and the parameters tested showed to have a variable impact on the display of nucleotide ratios. However, experiments revealed a high correlation between the expected and the measured nucleotide ratios in cell mixtures. Compared to the SNaPshot minisequencing, Sanger sequencing proved to be the more robust and reliable method for quantification of nucleotide ratios but showed a lower detection sensitivity of minor cytosine components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lutz S, Weisser HJ, Heizmann J, Pollak S (1996) mtDNA as a tool for identification of human remains. Identification using mtDNA. Int J Leg Med 109:205–209

    Article  CAS  Google Scholar 

  2. Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis—validation and use for forensic casework. Forensic Sci Rev 11:21–50

    Google Scholar 

  3. Budowle B, Allard MW, Wilson MR, Chakraborty R (2003) Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev Genomics Hum Genet 4:119–141

    Article  PubMed  CAS  Google Scholar 

  4. Szibor R, Plate I, Schmitter H, Wittig H, Krause D (2006) Forensic mass screening using mtDNA. Int J Leg Med 120:372–376

    Article  Google Scholar 

  5. Wong LJC, Boles RG (2005) Mitochondrial DNA analysis in clinical laboratory diagnostics. Clin Chim Acta 354:1–20

    Article  PubMed  CAS  Google Scholar 

  6. Gocke CD, Benko FA, Rogan PK (1998) Transmission of mitochondrial DNA heteroplasmy in normal pedigrees. Hum Genet 102:182–186

    Article  PubMed  CAS  Google Scholar 

  7. Salas A, Lareu MV, Carracedo A (2001) Heteroplasmy in mtDNA and the weight of evidence in forensic mtDNA analysis: a case report. Int J Leg Med 114:186–190

    Article  CAS  Google Scholar 

  8. Alonso A, Salas A, Albarrán C, Arroyo E, Castro A, Crespillo M, di Lonardo AM, Lareu MV, Cubría CL, Soto ML, Lorente JA, Semper MM, Palacio A, Paredes M, Pereira L, Lezaun AP, Brito JP, Sala A, Vide MC, Whittle M, Yunis JJ, Gómez J (2002) Results of the 1999–2000 collaborative exercise and proficiency testing program on mitochondrial DNA of the GEP-ISFG: an inter-laboratory study of the observed variability in the heteroplasmy level of hair from the same donor. Forensic Sci Int 125:1–7

    Article  PubMed  CAS  Google Scholar 

  9. Cavelier L, Johannisson A, Gyllensten U (2000) Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR. Exp Cell Res 259:79–85

    Article  PubMed  CAS  Google Scholar 

  10. Deckman KH, Levin BC, Helmerson K, Kishore RB, Reiner JE (2008) Isolation and characterization of a single mitochondrion. US patent 2008/0254530A1, pp 10–16

  11. Gill P, Ivanov PL, Kimpton C, Piercy R, Benson N, Tully G, Evett I, Hagelberg E, Sullivan K (1994) Identification of the remains of the Romanov family by DNA analysis. Nat Genet 6:130–135

    Article  PubMed  CAS  Google Scholar 

  12. Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ (1996) Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 12:417–420

    Article  PubMed  CAS  Google Scholar 

  13. Brandstätter A, Sänger T, Lutz-Bonengel S, Parson W, Béraud-Colomb E, Wen B, Kong QP, Bravi CM, Bandelt HJ (2005) Phantom mutation hotspots in human mitochondrial DNA. Electrophoresis 26:3414–3429

    Article  PubMed  Google Scholar 

  14. Tully LA, Parsons TJ, Steighner RJ, Holland MM, Marino MA, Prenger VL (2000) A sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am J Hum Genet 67:432–443

    Article  PubMed  CAS  Google Scholar 

  15. Lutz-Bonengel S, Sänger T, Parson W, Müller H, Ellwart JW, Follo M, Bonengel B, Niederstätter H, Heinrich M, Schmidt U (2008) Single lymphocytes from two healthy individuals with mitochondrial point heteroplasmy are mainly homoplasmic. Int J Leg Med 122:189–197

    Article  Google Scholar 

  16. Irwin JA, Saunier JL, Niederstätter H, Strouss KM, Sturk KA, Diegoli TM, Brandstätter A, Parson W, Parsons TJ (2009) Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J Mol Evol 68:516–527

    Article  PubMed  CAS  Google Scholar 

  17. Macmillan C, Lach B, Shoubridge EA (1993) Variable distribution of mutant mitochondrial DNAs (tRNA(Leu[3243])) in tissues of symptomatic relatives with MELAS: the role of mitotic segregation. Neurology 43:1586–1590

    PubMed  CAS  Google Scholar 

  18. Jazin EE, Cavelier L, Eriksson I, Oreland L, Gyllensten U (1996) Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc Natl Acad Sci USA 93:12382–12387

    Article  PubMed  CAS  Google Scholar 

  19. Calloway CD, Reynolds RL, Herrin GL Jr, Anderson WW (2000) The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age. Am J Hum Genet 66:1384–1397

    Article  PubMed  CAS  Google Scholar 

  20. Lacan M, Thèves C, Amory S, Keyser C, Crubézy E, Salles JP, Ludes B, Telmon N (2009) Detection of the A189G mtDNA heteroplasmic mutation in relation to age in modern and ancient bones. Int J Leg Med 123:161–167

    Article  Google Scholar 

  21. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779

    Article  PubMed  CAS  Google Scholar 

  22. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  23. Cassandrini D, Calevo MG, Tessa A, Manfredi G, Fattori F, Meschini MC, Carrozzo R, Tonoli E, Pedemonte M, Minetti C, Zara F, Santorelli FM, Bruno C (2006) A new method for analysis of mitochondrial DNA point mutations and assess levels of heteroplasmy. Biochem Biophys Res Commun 342:387–393

    Article  PubMed  CAS  Google Scholar 

  24. Köhnemann S, Pfeiffer H (2010) Application of mtDNA SNP analysis in forensic casework. Forensic Sci Int Genet. doi:10.1016/j.fsigen.2010.01.015

    PubMed  Google Scholar 

  25. Köhnemann S, Sibbing U, Pfeiffer H, Hohoff C (2008) A rapid mtDNA assay of 22 SNPs in one multiplex reaction increases the power of forensic testing in European Caucasians. Int J Leg Med 122:517–523

    Article  Google Scholar 

  26. Brandstätter A, Parson W (2003) Mitochondrial DNA heteroplasmy or artefacts—a matter of the amplification strategy? Int J Leg Med 117:180–184

    Article  Google Scholar 

  27. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147

    Article  PubMed  CAS  Google Scholar 

  28. Wong LJ, Scaglia F, Graham BH, Craigen WJ (2010) Current molecular diagnostic algorithm for mitochondrial disorders. Mol Genet Metab 100:111–117

    Article  PubMed  CAS  Google Scholar 

  29. Kolocheva TI, Nevinsky GA, Volchkova VA, Levina AS, Khomov VV, Lavrik OI (1989) DNA polymerase I (Klenow fragment): role of the structure and length of a template in enzyme recognition. FEBS Lett 248:97–100

    Article  PubMed  CAS  Google Scholar 

  30. Parker LT, Deng Q, Zakeri H, Carlson C, Nickerson DA, Kwok PY (1995) Peak height variations in automated sequencing of PCR products using Taq dye-terminator chemistry. Biotechniques 19:116–121

    PubMed  CAS  Google Scholar 

  31. Rosenblum BB, Lee LG, Spurgeon SL, Khan SH, Menchen SM, Heiner CR, Chen SM (1997) New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res 25:4500–4504

    Article  PubMed  CAS  Google Scholar 

  32. Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    Article  PubMed  CAS  Google Scholar 

  33. Andréasson H, Nilsson M, Budowle B, Frisk S, Allen M (2006) Quantification of mtDNA mixtures in forensic evidence material using pyrosequencing. Int J Leg Med 120:383–390

    Article  Google Scholar 

  34. Bai RK, Wong LJ (2004) Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 50:996–1001

    Article  PubMed  CAS  Google Scholar 

  35. Oberacher H, Niederstätter H, Parson W (2007) Liquid chromatography–electrospray ionization mass spectrometry for simultaneous detection of mtDNA length and nucleotide polymorphisms. Int J Leg Med 121:57–67

    Article  Google Scholar 

  36. Satoh M, Kuroiwa T (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res 196:137–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the state of Baden-Württemberg (Competence Centre “Legal Medicine”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Naue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Primers for PCR, Sanger sequencing, and SNaPshot minisequencing used in this study. (PDF 14 kb)

Online Resource 2

Nucleotide incorporation and display of heteroplasmy at position 16093. (PDF 1.78 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naue, J., Sänger, T., Schmidt, U. et al. Factors affecting the detection and quantification of mitochondrial point heteroplasmy using Sanger sequencing and SNaPshot minisequencing. Int J Legal Med 125, 427–436 (2011). https://doi.org/10.1007/s00414-011-0549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-011-0549-6

Keywords

Navigation