Skip to main content
Log in

Investigation of Heteroplasmy in the Human Mitochondrial DNA Control Region: A Synthesis of Observations from More Than 5000 Global Population Samples

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Instances of point and length heteroplasmy in the mitochondrial DNA control region were compiled and analyzed from over 5,000 global human population samples. These data represent observations from a large and broad population sample, representing nearly 20 global populations. As expected, length heteroplasmy was frequently observed in the HVI, HVII and HVIII C-stretches. Length heteroplasmy was also observed in the AC dinucleotide repeat region, as well as other locations. Point heteroplasmy was detected in approximately 6% of all samples, and while the vast majority of heteroplasmic samples comprised two molecules differing at a single position, samples exhibiting two and three mixed positions were also observed in this data set. In general, the sites at which heteroplasmy was most commonly observed correlated with reported control region mutational hotspots. However, for some sites, observations of heteroplasmy did not mirror established mutation rate data, suggesting the action of other mechanisms, both selective and neutral. Interestingly, these data indicate that the frequency of heteroplasmy differs between particular populations, perhaps reflecting variable mutation rates among different mtDNA lineages and/or artifacts of particular population groups. The results presented here contribute to our general understanding of mitochondrial DNA control region heteroplasmy and provide additional empirical information on the mechanisms contributing to mtDNA control region mutation and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147

    Article  PubMed  CAS  Google Scholar 

  • Bandelt H-J, Parson W (2008) Consistent treatment of length variants in the human mtDNA control region: a reappraisal. Int J Legal Med 122:11–21

    Article  PubMed  Google Scholar 

  • Bendall KE, Sykes BC (1995) Length heteroplasmy in the first hypervariable segment of the human mtDNA control region. Am J Hum Genet 57:248–256

    PubMed  CAS  Google Scholar 

  • Boyer JC, Yamada NA, Roques CN, Hatch SB, Riess K, Farber RA (2002) Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells. Hum Mol Genet 11:707–713

    Article  PubMed  CAS  Google Scholar 

  • Brandstätter A, Peterson CT, Irwin JA, Mpoke S, Koech DK, Parson W, Parsons TJ (2004) Mitochondrial DNA control region sequences from Nairobi (Kenya): inferring phylogenetic parameters for the establishment of a forensic database. Int J Legal Med 118:294–306

    Article  PubMed  Google Scholar 

  • Butler J (2005) Forensic DNA typing: biology, technology and genetics of STR markers, 2nd edn. Elsevier, Burlington, MA

    Google Scholar 

  • Calloway C, Reynolds R, Herrin G, Anderson W (2000) The frequency of heteroplasmy in the HVII region differs across tissue types and increases with age. Am J Hum Gen 66:1384–1397

    Article  CAS  Google Scholar 

  • Cann RL, Stoneking M, Wilson AC (1987) DNA and human evolution. Nature 325:31–36

    Article  PubMed  CAS  Google Scholar 

  • Chung U, Lee HY, Yoo JE, Park MJ, Shin KJ (2005) Mitochondrial DNA CA dinucleotide repeats in Koreans: the presence of length heteroplasmy. Int J Legal Med 119:50–53

    Article  PubMed  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  PubMed  CAS  Google Scholar 

  • Elliot HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83:254–260

    Article  CAS  Google Scholar 

  • Elson JL, Turnbull DM, Howell N (2004) Comparative genomics and the evolution of human mitochondrial DNA—assessing the effects of selection. Am J Hum Genet 74:229–238

    Article  PubMed  CAS  Google Scholar 

  • Finnilä S, Lehtonen MS, Majamaa K (2001) Phylogenetic network for European mtDNA. Am J Hum Genet 68:1475–1484

    Article  PubMed  Google Scholar 

  • Forster L, Forster P, Lutz-Bonengel S, Willkomm H, Brinkmann B (2002) Natural radioactivity and human mitochondrial DNA mutations. Proc Natl Acad Sci USA 99:13950–13954

    Article  PubMed  CAS  Google Scholar 

  • Herrnstadt C, Elson JL, Fahy E, Preston G, Turnbull DM, Anderson C, Ghosh SS, Olefsky JM, Beal F et al (2002) Coding-region sequences for the major African, Asian and European haplogroups. Am J Hum Genet 70:1152–1171

    Article  PubMed  CAS  Google Scholar 

  • Ho S, Phillips MJ, Cooper A, Drummon AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22:1561–1568

    Article  PubMed  CAS  Google Scholar 

  • Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis—validation and use for forensic casework. Forensic Sci Rev 11:21–50

    Google Scholar 

  • Howell N, Smejkal CB (2000) Persistent heteroplasmy of a mutation in the human mtDNA control region: hypermutation as an apparent consequence of simple-repeat expansion/contraction. Am J Hum Genet 66:1589–1598

    Article  PubMed  CAS  Google Scholar 

  • Howell N, Kubacka I, Mackey DA (1996) How rapidly does the human mitochondrial genome evolve? Am J Hum Genet 59:501–509

    PubMed  CAS  Google Scholar 

  • Howell N, Herrnstadt C, Mackey D (2001) Different patterns of expansion/contraction during the evolution of an mtDNA simple repeat. Mol Biol Evol 18:1593–1596

    PubMed  CAS  Google Scholar 

  • Howell N, Smejkal CB, Mackey DA, Chinnery PF, Turnbull DM, Herrnstadt C (2003) The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree studies. Am J Hum Genet 72:659–670

    Article  PubMed  CAS  Google Scholar 

  • Howell N, Elson JL, Turnbull DM, Herrnstadt C (2004) African haplogroup L mtDNA sequences show violations of clock-like evolution. Mol Biol Evol 21:1843–1854

    Article  PubMed  CAS  Google Scholar 

  • Howell N, Elson J, Howell C, Turnbull D (2007) Relative rates of evolution in the coding and control regions of African mtDNAs. Mol Biol Evol 24:2213–2221

    Article  PubMed  CAS  Google Scholar 

  • Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408:708–713

    Article  PubMed  CAS  Google Scholar 

  • Irwin J, Saunier J, Strouss K, Sturk K, Diegoli T, Just R, Coble M, Parson W, Parsons T (2007) Development and expansion of high quality control region databases to improve forensic mtDNA evidence interpretation. Forensic Sci Int Genet 1:154–157

    Article  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kivisild T, Shen P, Wall DP, Do B, Sung R, Davis K, Passarino G, Underhill PA, Scharfe C, Torroni A et al (2006) The role of selection in the evolution of human mitochondrial genomes. Genetics 172:373–387

    Article  PubMed  CAS  Google Scholar 

  • Lutz-Bonengel S, Sänger T, Pollak S, Szibor R (2004) Different methods to determine length heteroplasmy within the mitochondrial control region. Int J Legal Med 118:274–281

    Article  PubMed  Google Scholar 

  • Macaulay V, Richards M, Hickey E, Vega E, Cruciani F, Guida V, Scozzari R, Bonne-Tamir B, Sykes B, Torroni A (1999) The emerging tree of west Eurasian mtDNAs: a synthesis of control region sequences and RFLPs. Am J Hum Genet 64:232–249

    Article  PubMed  CAS  Google Scholar 

  • Malyarchuk BA, Rogozin IB (2004) Mutagenesis by transient misalignment in the human mitochondrial DNA control region. Ann Hum Genet 68:324–339

    Article  PubMed  CAS  Google Scholar 

  • Melton T (2004) Mitochondrial DNA heteroplasmy. Forensic Sci Rev 16:2–20

    Google Scholar 

  • Melton T, Dimick G, Higgins B, Lindstrom L, Nelson K (2005) Forensic mitochondrial DAN analysis of 691 casework hairs. J Forensic Sci 50:73–80

    Article  PubMed  CAS  Google Scholar 

  • Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD et al (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci USA 100:171–176

    Article  PubMed  CAS  Google Scholar 

  • Monson KL, Miller KWP, Wilson MR, DiZinno JA, Budowle B (2002) The mtDNA population database: An integrated software and database resource for forensic comparison. Forensic Sci Commun 4:(2). Available at: http://www.fbi.gov/hq/lab/fsc/backissu/april2002/miller1.htm. Accessed 13 April 2009

  • Pai CY, Hsieh LL, Lee TC, Yang SB, Linville J, Chou SL, Yang CH (2006) Mitochondrial DNA sequence alterations observed between blood and buccal cells within the same individuals having a betel quid (BQ)-chewing habit. Forensic Sci Int 156:124–130

    Article  PubMed  CAS  Google Scholar 

  • Parker LT, Keng Q, Zakeri H, Carlson C, Nickerson DA, Kwok PY (1995) Peak height variations in automated sequencing of PCR products using Taq dye-terminator chemistry. Biotechniques 19:116–121

    PubMed  CAS  Google Scholar 

  • Parker LT, Zakeri H, Deng Q, Spurgeon S, Kwok PY, Nickerson DA (1996) AmpliTaq DNA polymerase, FS dye-terminator sequencing: analysis of peak height patterns. Biotechniques 21:694–699

    PubMed  CAS  Google Scholar 

  • Parsons TJ, Muniec DS, Sullivan K, Woodyatt N, Alliston-Greiner R, Wilson MR, Berry DL, Holland KA, Weedn VW, Gill P et al (1997) A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet 15:363–368

    Article  PubMed  CAS  Google Scholar 

  • Pereira F, Soares P, Carneiro J, Pereira L, Richards MB, Samuels DC, Amorim A (2008) Evidence for variable selective pressures at a large secondary structure of the human mitochondrial DNA control region. Mol Biol Evol 25:2579–2880

    Article  CAS  Google Scholar 

  • Richards M, Corte-Real H, Forster P, Macaulay V, Wilkinson-Herbots H, Demain A, Papiha S, Hedges R, Bandelt HJ, Sykes B (1996) Paleolithic and Neolithic lineages in the European mitochondrial gene pool. Am J Hum Genet 59:185–203

    PubMed  CAS  Google Scholar 

  • Santos C, Montiel R, Sierra B, Bettencourt C, Fernandez E, Alvarez L, Lima M, Abade A, Aluja MP (2005) Understanding differences between phylogenetic and pedigree-derived mtDNA mutation rate: a model using families from the Azores Islands (Portugal). Mol Biol Evol 22:1490–1505

    Article  PubMed  CAS  Google Scholar 

  • Santos C, Sierra B, Alvarez L, Ramos A, Fernandez E, Nogues R, Aluha MP (2008) Frequency and pattern of heteroplasmy in the control region of human mitochondrial DNA. J Mol Evol 67:191–200

    Article  PubMed  CAS  Google Scholar 

  • Shinde D, Lai Y, Sun F, Arnheim N (2003) Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acids Res 31:974–980

    Article  PubMed  CAS  Google Scholar 

  • Sigurdardottir S, Helgason A, Gulcher JR, Stefansson K, Donnelly P (2000) The mutation rate in the human mtDNA control region. Am J Hum Genet 66:1599–1609

    Article  Google Scholar 

  • Stewart JE, Fisher CL, Aagaard PJ, Wilson MR, Isenberg AR, Polanskey D, Pokorak E, DiZinno JA, Budowle B (2001) Length variation in HV2 of the human mitochondrial DNA control region. J Forensic Sci 46:862–870

    PubMed  CAS  Google Scholar 

  • Strouss K (2006) Relative evolutionary rate estimation for sites in the mtDNA control region. Master’s thesis. George Washington University, Washington, DC

  • Swofford D (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods) version 4. Sinauer Assosiates, Sunderland, MA

  • Szibor R, Plate I, Heinrich M, Michael M, Schoning R, Wittig H, Lutz-Bonengel S (2006) Mitochondrial D-loop (CA)(n) repeat length heteroplasmy: frequency in a German population sample and inheritance studies in two pedigrees. Int J Legal Med 121:207–213

    Article  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Torroni A, Schurr TG, Cabell MF, Brown MD, Neel JV et al (1993) Asian affinities and continental radiation of the four founding Native American mtDNAs. Am J Hum Genet 53:563–590

    PubMed  CAS  Google Scholar 

  • Torroni A, Lott MT, Cabell MF, Chen YS, Lavergne L, Wallace DC (1994) mtDNA and the origin of Caucasians: identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am J Hum Genet 55:760–776

    PubMed  CAS  Google Scholar 

  • Torroni A, Rengo C, Guida V, Cruciani F, Sellitto D, Coppa A, Calderon FL, Simionati B, Valle G, Richards M et al (2001) Do the four clades of the mtDNA haplogroup L2 evolve at different rates? Am J Hum Genet 69:1348–1356

    Article  PubMed  CAS  Google Scholar 

  • Torroni A, Achilli A, Macaulay V, Richards M, Bandelt HJ (2006) Harvesting the fruit of the human mtDNA tree. Trends Genet 22:339–345

    Article  PubMed  CAS  Google Scholar 

  • Tully LA, Parsons TJ, Steighner RJ, Holland MM, Marino MA, Prenger VL (2000) A sensitive denaturing gradient gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region I of the human mtDNA control region. Am J Hum Genet 67:432–443

    Article  PubMed  CAS  Google Scholar 

  • Underhill P, Kivisild T (2007) Use of Y chromosome and mitochondrial DNA population structure in tracing human migrations. Annu Rev Genet 41:539–564

    Article  PubMed  CAS  Google Scholar 

  • Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC (1991) African populations and the evolution of human mitochondrial DNA. Science 253:1503–1507

    Article  PubMed  CAS  Google Scholar 

  • Wakeley J (1993) Substitution rate variation among sites in hypervariable region 1 of human mitochondrial DNA. J Mol Evol 37:613–623

    Article  PubMed  CAS  Google Scholar 

  • Watson E, Forster P, Richards M, Bandelt H-J (1997) Mitochondrial footprints of human expansions in Africa. Am J Hum Genet 61:691–704

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Allard M, Monson K, Miller K, Budowle B (2002a) Recommendations for consistent treatment of length variants in the human mitochondrial DNA control region. Forensic Sci Int 129:35–42

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Allard M, Monson K, Miller K, Budowle B (2002b) Further discussion of the consistent treatment of length variants in the human mitochondrial DNA control region. Forensic Sci Commun 4:4

    Google Scholar 

  • Yang Z (1994) Estimating the pattern of nucleotide substitution. J Mol Evol 39:105–111

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Heather Williams, Jennifer O’Callaghan, Carla Paintner, Jennifer Bas, Kimberly Watson, Daniela Niederwieser, Bettina Zimmermann, and Gabriela Huber for excellent technical assistance; Rebecca Just and Michael Coble for helpful discussion; and the American Registry of Pathology, James Canik, Brion Smith, and Louis Finelli for logistical and administrative support. We also thank the numerous collaborators who have kindly contributed population samples. Portions of this work were supported by a National Institute of Justice grant to T. J. P (Grant No. 2000-1 J-CX-K010) by the FWF Austrian Science Fund (TR397). The opinions and assertions contained herein are solely those of the authors and are not to be construed as official or as views of the United States Department of Defense, the United States Department of the Army, or the United States Department of Justice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jodi A. Irwin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

239_2009_9227_MOESM1_ESM.doc

Supplementary Table S1 is available online. Haplotype data are available on request. Sequences from this data set may also be found at www.empop.org or under the following GenBank accession numbers: DQ906346-DQ906708; FJ026015-FJ026391; DQ418040-DQ418130; EU718790-EU719066; DQ418131-DQ418449; EU014897-EU015024; DQ359273-DQ359688; AY632902-AY633004; and DQ535903-DQ536089. 1 (DOC 436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irwin, J.A., Saunier, J.L., Niederstätter, H. et al. Investigation of Heteroplasmy in the Human Mitochondrial DNA Control Region: A Synthesis of Observations from More Than 5000 Global Population Samples. J Mol Evol 68, 516–527 (2009). https://doi.org/10.1007/s00239-009-9227-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9227-4

Keywords

Navigation