Skip to main content
Log in

A rapid mtDNA assay of 22 SNPs in one multiplex reaction increases the power of forensic testing in European Caucasians

  • Technical Note
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

We have developed a multiplex mitochondrial (mtDNA) assay of 21 coding region single nucleotide polymorphisms (SNPs) and one control region SNP outside hypervariable region 1 (HVR1) and hypervariable region 2 (HVR2) that can be amplified in a single reverse touchdown polymerase chain reaction. Single base extension using the SNaPshot technique is also carried out as one multiplex. Besides the nine major European haplogroups (i.e. H, I, J, K, T, U, V, W, and X), 16 additional subclades (i.e. N1, X2, X2b, U2′-4/7′-9′, J/T, J1, J1c, HV, H1, H1a1, H1c, H3, H4, H6a, H7a H10) can be detected and classified into a phylogenetic mtDNA tree. By analyzing 130 Caucasoid samples from Germany, 36 different haplotypes were found resulting in a power of discrimination of 93.2%. Although 49% of all samples belonged to superhaplogroup H, the most common haplotype, i.e., haplogroup-specific SNPs plus haplogroup unspecific SNPs, had a frequency of only 18%. This assay is applicable for high-throughput mtDNA analysis and forensic mass screening. It will give additional information to the common control region sequencing of HVR1 and HVR2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–226

    Article  PubMed  CAS  Google Scholar 

  2. Fernandez-Moreno MA, Bornstein B, Petit N, Garesse R (2000) The pathophysiology of mitochondrial biogenesis: towards four decades of mitochondrial DNA research. Mol Genet Metab 71:481–495

    Article  PubMed  CAS  Google Scholar 

  3. Tolk HV, Barac L, Pericic M et al (2001) The evidence of mtDNA haplogroup F in a European population and its ethnohistoric implications. Eur J Hum Genet 9:717–723

    Article  PubMed  CAS  Google Scholar 

  4. Holland MM, Cave CA, Holland CA et al (2003) Development of a quality, high throughput DNA analysis procedure for skeletal samples to assist with the identification of victims from the World Trade Center attacks. Croat Med J 44:264–272

    PubMed  Google Scholar 

  5. Turchi C, Buscemi L, Previderè C, Grignani P, Brandstätter A, Achilli A, Parson W, Tagliabracci A (2008) Italian mitochondrial DNA database: results of a collaborative exercise and proficiency testing. Int J Legal Med 122:199–204

    Article  PubMed  Google Scholar 

  6. Gilbert MT, Djurhuus D, Melchior L et al (2007) mtDNA from hair and nail clarifies the genetic relationship of the 15th century Qilakitsoq Inuit mummies. Am J Phys Anthropol 133(2):847–853

    Article  PubMed  Google Scholar 

  7. Loogväli EL, Roostalu U, Malyarchuk BA et al (2004) Disuniting uniformity: a pied cladistic canvas of mtDNA haplogroup H in Eurasia. Mol Biol Evol 21:2012–2021

    Article  PubMed  Google Scholar 

  8. Brandstätter A, Salas A, Niederstätter H, Gassner C, Carracedo A, Parson W (2006) Dissection of mitochondrial superhaplogroup H using coding region SNPs. Electrophoresis 27:2541–2550

    Article  PubMed  Google Scholar 

  9. Grignani P, Peloso G, Achilli A et al (2006) Subtyping mtDNA haplogroup H by SNaPshot minisequencing and its application in forensic individual identification. Int J Legal Med 120:151–156

    Article  PubMed  CAS  Google Scholar 

  10. Salas A, Bandelt HJ, Macaulay V, Richards MB (2007) Phylogeographic investigations: the role of trees in forensic genetics. Forensic Sci Int 168:1–13

    Article  PubMed  CAS  Google Scholar 

  11. Szibor R, Plate I, Schmitter H, Wittig H, Krause D (2006) Forensic mass screening using mtDNA. Int J Legal Med 120:372–376

    Article  PubMed  Google Scholar 

  12. Vallone PM, Butler JM (2004) Auto Dimer: a screening tool for primer–dimer and hairpin structures. Biotechniques 37:226–231

    PubMed  CAS  Google Scholar 

  13. Brandstätter A, Parsons TJ, Parson W (2003) Rapid screening of mtDNA coding region SNPs for the identification of west European Caucasian haplogroups. Int J Legal Med 117:291–298

    Article  PubMed  Google Scholar 

  14. Coble MD, Just RS, O’Callaghan JE et al (2004) Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians. Int J Legal Med 118:137–146

    Article  PubMed  Google Scholar 

  15. Quintans B, Álvarez-Iglesias V, Salas A, Phillips C, Lareu MV, Carracedo A (2004) Typing of mitochondrial DNA coding region SNPs of forensic and anthropological interest using SNaPshot minisequenzing. Forensic Sci Int 140:251–257

    Article  PubMed  CAS  Google Scholar 

  16. Vallone PM, Just RS, Coble MD, Butler JM, Parsons TJ (2004) A multiplex allele specific primer extension assay for forensically informative SNPs distributed throughout the mitochondrial genome. Int J Legal Med 118:147–157

    Article  PubMed  Google Scholar 

  17. Sanchez JJ, Børsting C, Morling N (2005) Typing of Y chromosome SNPs with multiplex PCR methods. Methods Mol Biol 297:209–228

    PubMed  CAS  Google Scholar 

  18. Singer-Sam J, Tanguay RL, Riggs AD (1989) Use of chelex to improve the PCR signal from a small number of cells. Amplifications: A Forum for PCR Users. 3:11

    Google Scholar 

  19. Pfeiffer H, Steighner R, Fisher R, Mörnstad H, Yoon CL, Holland MM (1998) Mitochondrial DNA extraction and typing from isolated dentin-experimental evaluation in a Korean population. Int J Legal Med 111:309–313

    Article  PubMed  CAS  Google Scholar 

  20. Hellmann A, Rohleder U, Schmitter H, Wittig M (2001) STR typing of human telogen hairs—a new approach. Int J Legal Med 114:269–273

    Article  PubMed  CAS  Google Scholar 

  21. Torroni A, Achilli A, Macaulay V, Richards M, Bandelt HJ (2006) Harvesting the fruit of the human mtDNA tree. Trends Genet 22:339–345

    Article  PubMed  CAS  Google Scholar 

  22. Butler JM, Ruitberg CM, Vallone PM (2001) Capillary electrophoresis as a tool for optimization of multiplex PCR reactions. J Anal Chem 369:200–205

    Article  CAS  Google Scholar 

  23. Parson W, Fendt L, Ballard D et al (2008) Identification of West Eurasian mitochondrial haplogroups by mtDNA SNP screening: Results of the 2006–2007 EDNAP collaborative exercise. Forensic Sci Int 2:61–68

    Article  Google Scholar 

  24. Lutz-Bonengel S, Sänger T, Parson W, Müller H, Ellwart JW, Follo M, Bonengel B, Niederstätter H, Heinrich M, Schmidt U (2007) Single lymphocytes from two healthy individuals with mitochondrial point heteroplasmy are mainly homoplasmic. Int J Legal Med 122:189–197

    Article  PubMed  Google Scholar 

  25. Eichmann C, Parson W (2008) ‘Mitominis’: multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples. Int J Legal Med doi:10.1007/s00414-008-0227-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hohoff.

Electronic supplementary materials

Below is the link to the electronic supplementary materials.

ESM 1

(XLS 29.0 KB)

ESM 2

(XLS 29.0 KB)

ESM 3

(XLS 52 KB)

ESM 4

(PDF 120 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhnemann, S., Sibbing, U., Pfeiffer, H. et al. A rapid mtDNA assay of 22 SNPs in one multiplex reaction increases the power of forensic testing in European Caucasians. Int J Legal Med 122, 517–523 (2008). https://doi.org/10.1007/s00414-008-0267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-008-0267-x

Keywords

Navigation