Skip to main content
Log in

ChIP-cloning analysis uncovers centromere-specific retrotransposons in Brassica nigra and reveals their rapid diversification in Brassica allotetraploids

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Centromeres are indispensable functional units of chromosomes. The evolutionary mechanisms underlying the rapid evolution of centromeric repeats, especially those following polyploidy, remain unknown. In this study, we isolated centromeric sequences of Brassica nigra, a model diploid progenitor (B genome) of the allopolyploid species B. juncea (AB genome) and B. carinata (BC genome) by chromatin immunoprecipitation of nucleosomes containing the centromere-specific histone CENH3. Sequence analysis detected no centromeric satellite DNAs, and most B. nigra centromeric repeats were found to originate from Tyl/copia-class retrotransposons. In cytological analyses, six of the seven analyzed repeat clusters had no FISH signals in A or C genomes of the related diploid species B. rapa and B. oleracea. Notably, five repeat clusters had FISH signals in both A and B subgenomes in the tetraploid B. juncea. In the tetraploid B. carinata, only CL23 displayed three pairs of signals in terminal or interstitial regions of the C-derived chromosome, and no evidence of colonization of CLs onto C-subgenome centromeres was found in B. carinata. This observation suggests that centromeric repeats spread and proliferated between genomes after polyploidization. CL3 and CRB are likely ancient centromeric sequences arising prior to the divergence of diploid Brassica which have detected signals across the genus. And in allotetraploids B. juncea and B. carinata, the FISH signal intensity of CL3 and CRB differed among subgenomes. We discussed possible mechanisms for centromeric repeat divergence during Brassica speciation and polyploid evolution, thus providing insights into centromeric repeat establishment and targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beilstein MA, Nagalingum NS, Clements MD, Manchester SR (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:18724–18728

    Article  PubMed Central  PubMed  Google Scholar 

  • Belyayev A (2014) Bursts of transposable elements as an evolutionary driving force. J Evol Biol 27:2573–2584

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Robin BC, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A 95:8135–8140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong Z, Wu Y, Koblízková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Buell CR, Macas J, Jiang J (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gorinsek B, Gubensek F, Kordis D (2004) Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol 21:781–798

    Article  CAS  PubMed  Google Scholar 

  • Hall LE, Mitchell SE, O'Neill RJ (2012) Pericentric and centromeric transcription: a perfect balance required. Chromosom Res 20:535–546

    Article  CAS  Google Scholar 

  • Han J, Masonbrink RE, Shan W, Song F, Zhang J, Yu W, Wang K, Wu Y, Tang H, Wendel JF, Wang K (2016) Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton. Plant J 88:992–1005

    Article  CAS  PubMed  Google Scholar 

  • Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90:157–165

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Dalal Y (2005) Centromeric chromatin: what makes it unique? Curr Opin Genet Dev 15:177–184

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283

    Article  CAS  PubMed  Google Scholar 

  • Hudakova S, Michalek W, Presting GG, Hoopen R, Santos K, Jasencakova Z, Schubert I (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029–5035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot Jan 95:229–235

    Article  CAS  Google Scholar 

  • Koo DH, Hong CP, Batley J, Chung YS, Edwards D, Bang JW, Hur Y, Lim YP (2011) Rapid divergence of repetitive DNAs in Brassica relatives. Genomics 97:173–185

    Article  CAS  PubMed  Google Scholar 

  • Kraitshtein Z, Yaakov B, Khasdan V, Kashkush K (2010) Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat. Genetics 186:801–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res 7:315–321

    Article  CAS  PubMed  Google Scholar 

  • Lamb JC, Theuri J, Birchler JA (2004) What’s in a centromere? Genome Biol 5:239

    Article  PubMed Central  PubMed  Google Scholar 

  • Langdon T, Seago C, Mende M, Leggett M, Thomas H, Forster JW, Jones RN, Jenkins G (2000) Retrotransposon evolution in diverse plant genomes. Genetics 156:313–325

    PubMed Central  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, Jin M, Jin YM, Kim SH, Lim YP, Bang JW, Kim HI, Park BS (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cell 19:436–444

    CAS  Google Scholar 

  • Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JK, Kwon SJ, Kim JA, Choi BS, Lim MH, Jin M, Kim HI, Jong H, Bancroft I, Lim YP, Park BS (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173–183

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yue W, Li D, Wang RRC, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445–456

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macas J, Neumann P, Novák P, Jiang J (2010) Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Bioinformatics 26:2101–2108

    Article  CAS  PubMed  Google Scholar 

  • Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosom Res 13:195–203

    Article  CAS  Google Scholar 

  • Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    PubMed Central  CAS  PubMed  Google Scholar 

  • Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E, Hobza R, Widmer A, Dolezel J, Macas J (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2:4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parkin IA, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien MA (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135–147

    Article  CAS  PubMed  Google Scholar 

  • Santos FC, Guyot R, do Valle CB, Chiari L, Techio VH, Heslop-Harrison P, Vanzela AL (2015) Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Chromosom Res 23:571–582

    Article  CAS  Google Scholar 

  • Song K, Lu P, Osborn C (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploidy evolution. Proc Natl Acad Sci U S A 92:7719–7723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tran TD, Cao HX, Jovtchev G, Neumann P, Novák P, Fojtová M, Vu GT, Macas J, Fajkus J, Schubert I, Fuchs J (2015) Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J 84:1087–1099

    Article  CAS  PubMed  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Botan 7:389–452

    Google Scholar 

  • Vermaak D, Hayden HS, Henikoff S (2002) Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22:7553–7561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang G, He Q, Liu F, Cheng Z, Talbert PB, Jin W (2011) Characterization of CENH3 proteins and centromere-associated DNA sequences in diploid and allotetraploid Brassica species. Chromosoma 120:353–365

    Article  CAS  PubMed  Google Scholar 

  • Wang G, He Q, Macas J, Novák P, Neumann P, Meng D, Zhao H, Guo N, Han S, Zong M, Jin W, Liu F (2017) Karyotypes and distribution of tandem repeat sequences in Brassica nigra determined by fluorescence in situ hybridization. Cytogenet Genome Res 152:158–165

    Article  CAS  PubMed  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported partially by grants from the Youth Science Research Foundation of Beijing Academy of Agriculture and Forestry Sciences (No. QNJJ2016) and the Natural Science Foundation of China (31000538).

Author information

Authors and Affiliations

Authors

Contributions

Jin conceived the research and corrected this manuscript, Wang, He, and Zhao conducted cytogenetic experiments. Cai and Guo analyzed data. Zong, Han, and Liu provide and cultivate the plant materials. Wang wrote the article.

Corresponding author

Correspondence to Wei-wei Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Gx., He, Qy., Zhao, H. et al. ChIP-cloning analysis uncovers centromere-specific retrotransposons in Brassica nigra and reveals their rapid diversification in Brassica allotetraploids. Chromosoma 128, 119–131 (2019). https://doi.org/10.1007/s00412-019-00701-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-019-00701-z

Keywords

Navigation