Skip to main content
Log in

Evolution of the structure and composition of house mouse satellite DNA sequences in the subgenus Mus (Rodentia: Muridea): a cytogenomic approach

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The composition and orientation of the house mouse satellite DNA sequences (minor, major, TLC) were investigated by a FISH and CO-FISH approach in 11 taxa belonging to three clades of the subgenus Mus. Using a phylogenetic framework, our results highlighted two distribution patterns. The TLC satellite, the most recently discovered satellite, was present in all clades but varied quantitatively among species. This distribution supported its appearance in the ancestor of the subgenus followed by independent evolution in species of each clade. In contrast, the minor and major satellites occurred in only two clades of the subgenus indicating the simultaneous and recent amplification of these sequences. In addition, although qualitative differences in the composition and orientation of the satellite sequences were observed among the taxa, none of the features studied were unique to the house mouse and could account for the extensive chromosomal plasticity evidenced in Mus musculus domesticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta M, Marchal J, Fernández-Espartero C, Romero-Fernández I, Rovatsos M, Giagia-Athanasopoulou E, Gornung E, Castiglia R, Sánchez A (2010) Characterization of the satellite DNA Msat-160 from species of Terricola (Microtus) and Arvicola (Rodentia, Arvicolinae). Genetica 138(9):1085–1098

    Article  PubMed  Google Scholar 

  • Adega F, Guedes-Pinto H, Chaves R (2009) Satellite DNA in the karyotype evolution of domestic animals—clinical considerations. Cytogenet Genome Res 126:12–20

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay R, Berend SA, Page SL, Choo KHA, Shaffer LG (2001) Satellite III sequences on 14p and their relevance to Robertsonian translocation formation. Chromosom Res 9(3):235–242

    Article  CAS  Google Scholar 

  • Boursot P, Jacquart T, Bonhomme F, Britton-Davidian J, Thaler L (1985) Différenciation géographique du génome mitochondrial chez Mus spretus Lataste. C R Acad Sci 301:161–165

    CAS  Google Scholar 

  • Brown JD, Piccuillo V, O'Neill RJ (2012) Retroelement demethylation associated with abnormal placentation in Mus musculus × Mus caroli hybrids. Biol Reprod 86:88

    Article  PubMed  Google Scholar 

  • Carbone L, Harris RA, Vessere GM, Mootnick AR, Humphray S, Rogers J, Kim SK, Wall JD, Martin D, Jurka J, Milosavljevic A, de Jong PJ (2009) Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution. PLoS Genet 5(6):e1000538

    Article  PubMed  Google Scholar 

  • Cazaux B, Catalan J, Veyrunes F, Douzery EJP, Britton-Davidian J (2011) Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae). BMC Evol Biol 11:124

    Article  PubMed  Google Scholar 

  • Chakrabarti S, Chakrabarti A (1977) Spontaneous Robertsonian fusion leading to karyotype variation in the house mouse—first report from Asia. Experientia 33:175–177

    Article  PubMed  CAS  Google Scholar 

  • Chaves R, Adega F, Heslop-Harrison J, Guedes-Pinto H, Wienberg J (2003a) Complex satellite DNA reshuffling in the polymorphic t(1;29) Robertsonian translocation and evolutionarily derived chromosomes in cattle. Chromosom Res 11(7):641–648

    Article  CAS  Google Scholar 

  • Chaves R, Adega F, Wienberg J, Guedes-Pinto H, Heslop-Harrison JS (2003b) Molecular cytogenetic analysis and centromeric satellite organization of a novel 8; 11 translocation in sheep: a possible intermediate in biarmed chromosome evolution. Mamm Genome 14(10):706–710

    Article  PubMed  Google Scholar 

  • Chevret P, Jenkins P, Catzeflis F (2003) Evolutionary systematics of the indian mouse Mus famulus Bonhote, 1898: molecular (DNA/DNA hybridization and 12S rRNA sequence) and morphological evidence. Zool J Linnean Soc 137:385–401

    Article  Google Scholar 

  • Chevret P, Veyrunes F, Britton-Davidian J (2005) Molecular phylogeny of the genus Mus (Rodentia: Murinae) based on mitochondrial and nuclear data. Biol J Linn Soc 84:417–427

    Article  Google Scholar 

  • Coghlan A, Eichler EE, Olivier SG, Paterson AH, Stein L (2005) Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet 21:673–682

    Article  PubMed  CAS  Google Scholar 

  • Cowell JK (1984) A photographic representation of the variability of G-banded structure of the chromosomes of the mouse karyotype. Chromosoma 89:294–320

    Article  PubMed  CAS  Google Scholar 

  • Cucchi T, Orth A, Auffray J-C, Renaud S, Fabre L, Catalan J, Hadjisterkotis E, Bonhomme F, Vigne J-D (2006) A new endemic species of the subgenus Mus (Rodentia, Mammalia) on the island of Cyprus. Zootaxa 1241:1–36

    Google Scholar 

  • Di Meo G, Perucatti A, Chaves R, Adega F, De Lorenzi L, Molteni L, De Giovanni A, Incarnato D, Guedes-Pinto H, Eggen A, Iannuzzi L (2006) Cattle rob(1;29) originating from complex chromosome rearrangements as revealed by both banding and FISH-mapping techniques. Chromosom Res 14(6):649–655

    Article  CAS  Google Scholar 

  • Dobigny G, Waters PD, Robinson TJ (2006) Absence of hypomethylation and LINE-1 amplification in a white × black rhinoceros hybrid. Genetica 127:81–86

    Article  PubMed  CAS  Google Scholar 

  • Dod B, Mottez E, Desmarais E, Bonhomme F, Roizes G (1989) Concerted evolution of light satellite DNA in genus Mus implies amplification and homogenization of large blocks of repeats. Mol Biol Evol 6:478–491

    PubMed  CAS  Google Scholar 

  • Eichler EE, Sankoff D (2003) Structural dynamics of eukaryotic chromosome evolution. Science 301:793–797

    Article  PubMed  CAS  Google Scholar 

  • Ellingsen A, Slamovits CH, Rossi MS (2007) Sequence evolution of the major satellite DNA of the genus Ctenomys (octodontidae, Rodentia). Gene 392:283–290

    Article  PubMed  CAS  Google Scholar 

  • Falconer E, Chavez E, Henderson A, Lansdorp P (2010) Chromosome orientation fluorescence in situ hybridization to study sister chromatid segregation in vivo. Nat Protoc 5:1362–1377

    Article  PubMed  CAS  Google Scholar 

  • Farre M, Montserrat B, Lopez-Giraldez F, Ponsa M, Ruiz-Herrera A (2011) Assessing the role of tandem repeats in shaping the genomic architecture of great apes. PLoS One 6:e27239

    Article  PubMed  CAS  Google Scholar 

  • Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, Gupta RV, Montgomery J, Morenzoni MM, Nilsen GB, Pethiyagoda CL, Stuve LL, Johnson FM, Daly MJ, Wade CM, Cox DR (2007) A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Froenicke L, Lyons AL (2008) Hotspots of mammalian chromosome evolution. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net. doi:10.1002/9780470015902.a0020750

  • Garagna S, Redi C, Capanna E, Andayani N, Alfano RM, Doi P, Viale G (1993) Genome distribution, chromosomal allocation, and organisation of the major and minor satellite DNAs in 11 species and subspecies of genus Mus. Cytogenet Cell Genet 64:247–255

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Broccoli D, Redi C, Searle JB, Cooke HJ, Capanna E (1995) Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pereicentromeric area. Chromosoma 103:685–692

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Marziliano N, Zuccotti M, Searle JB, Capanna E, Redi CA (2001) Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc Natl Acad Sci U S A 98(1):171–175

    Article  PubMed  CAS  Google Scholar 

  • Gauthier P, Hima K, Dobigny G (2010) Robertsonian fusions, pericentromeric repeat organization and evolution: a case study within a highly polymorphic rodent species, Gerbillus nigeriae. Chromosom Res 18:473–486

    Article  CAS  Google Scholar 

  • Goodwin EH, Meyne J (1993) Strand-specific FISH reveals orientation of chromosome 18 alphoid DNA. Cytogenet Cell Genet 63:126–127

    Article  PubMed  CAS  Google Scholar 

  • Halkka L, Vakula N, Kaikusalo A (1994) Polymorphic and stable chromosomes of Sorex araneaus L. differ in centromere constitution (R-banding): evolutionary aspects. Ann Zool Fenn 31:289–296

    Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293(5532):1098–1102. doi:10.1126/science.1062939

    Article  PubMed  CAS  Google Scholar 

  • Kalitsis P, Fowler KJ, Earle E, Griffiths B, Howman E, Newson AJ, Choo KHA (2003) Partially functional Cenpa-GFP fusion protein causes increased chromosome missegregation and apoptosis during mouse embryogenesis. Chromosom Res 11:345–357

    Article  CAS  Google Scholar 

  • Kalitsis P, Griffiths B, Choo KHA (2006) Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation. Proc Natl Acad Sci 103(23):8786–8791. doi:10.1073/pnas.0600250103

    Article  PubMed  CAS  Google Scholar 

  • Kemkemer C, Kohn M, Cooper DN, Froenicke L, Högel J, Hameister H, Kehrer-Sawatzki H (2009) Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution. BMC Evol Biol 9:84

    Article  PubMed  Google Scholar 

  • Kipling D, Warburton PE (1997) Centromeres, CENP-B and Tigger too. Trends Genet 13(4):141–145

    Article  PubMed  CAS  Google Scholar 

  • Kipling D, Mitchell AR, Masumoto H, Wilson HE, Nicol L, Cooke HJ (1995) CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli. Mol Cell Biol 15:4009–4020

    PubMed  CAS  Google Scholar 

  • Kunze B, Traut W, Garagna S, Weichenham D, Redi CA, Winking H (1999) Pericentric satellite DNA and molecular phylogeny in Acomys (Rodentia). Chromosom Res 7:131–141

    Article  CAS  Google Scholar 

  • Lee MR, Elder FFB (1980) Yeast simulation of bone marrow mitosis for cytogenetic investigations. Cytogenet Cel Genet 26:36–40

    Article  CAS  Google Scholar 

  • Metcalfe CJ, Bulazel KV, Ferreri GC, Schroeder-Reiter E, Wanner G, Rens W, Obergfell C, Eldridge MDB, O'Neill RJ (2007) Genomic instability within centromeres of interspecific Marsupial hybrids. Genetics 177:2507–2517

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AR (1996) The mammalian centromere: its molecular architecture. Mutat Res 372:153–162

    Article  PubMed  CAS  Google Scholar 

  • Mlynarski EE, Obergfell CJ, O’Neill MJ, O’Neill RJ (2010) Divergent patterns of breakpoint reuse in Muroid rodents. Mamm Genome 21:77–87

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Schneider-Rasp S, Winking H, Schmid M (1995) Loss of telomeric sites in the chromosomes of Mus musculus domesticus (Rodentia: Muridae) during Robertsonian rearrangements. Chromosom Res 3:399–409

    Article  CAS  Google Scholar 

  • Narayanswami S, Doggett NA, Clark LM, Hildebrand CE, Weier HU, Hamkalo BA (1992) Cytological and molecular characterization of centromeres in Mus domesticus and Mus spretus. Mamm Genome 2(3):186–194. doi:10.1007/bf00302876

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TT, Aniskin VM, Gerbault-Seureau M, Planton H, Renard JP, Nguyen BX, Hassanin A, Volobouev VT (2008) Phylogenetic position of the saola (Pseudoryx nghetinhensis) inferred from cytogenetic analysis of eleven species of Bovidae. Cytogenet Genome Res 122:41–54

    Article  PubMed  CAS  Google Scholar 

  • Nijman IJ, Lenstra JA (2001) Mutation and recombination in cattle satellite DNA: a feedback model for the evolution of satellite DNA repeats. J Mol Evol 52(4):361–371

    PubMed  CAS  Google Scholar 

  • O’Neill RJW, O’Neill MJ, Graves JAM (1998) Undermethylation associated with retroelement activation and chromosome remodeling in an interspecific mammalian hybrid. Nature 393:68–72

    Article  PubMed  Google Scholar 

  • Pertile MD, Graham AN, Choo AKH, Kalitsis P (2009) Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability. Genome Res 19

  • Piálek J, Hauffe HC, Searle JB (2005) Chromosomal variation in the house mouse. Biol J Linn Soc 84:535–563

    Google Scholar 

  • Pietras DF, Bennett KL, Siracusa LD, Woodworth-Gutai M, Chapman VM, Gross KW, Kane-Haas C, Hastie ND (1983) Construction of small Mus musculus repetitive DNA library: identification of a new satellite sequences in Mus musculus. Nucleic Acids Res 11:6976–6983

    Article  Google Scholar 

  • Plohl M, Luchetti A, Mestrovic N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72–82

    Article  PubMed  CAS  Google Scholar 

  • Rebuzzini P, Castiglia R, Nergadze SG, Mitsainas GP, Munclinger P, Zuccotti M, Capanna E, Redi C, Garagna S (2009) Quantitative variation of Line-1 sequences in five species and three subspecies of the subgenus Mus and in five Robertsonian races of Mus musculus domesticus. Chromosome Res 17(1):65–76

    Article  PubMed  CAS  Google Scholar 

  • Redi C, Garagna S, Zuccotti M (1990a) Robertsonian chromosome formation and fixation: the genomic scenario. Biol J Linn Soc 41:235–255

    Article  Google Scholar 

  • Redi CA, Garagna S, Della Valle G, Bottiroli G, Dell'Orto P, Viale G, Peverali FA, Raimondi E, Forejt J (1990b) Differences in the organization and chromosomal allocation of satellite DNA between the European long tailed house mice Mus domesticus and Mus musculus. Chromosoma 99:11–17

    Article  PubMed  CAS  Google Scholar 

  • Robertson W (1916) Chromosome studies. I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae. V-shaped chromosomes and their significance in Acrididae, Locustidae and Gryllidae: chromosomes and variation. J Morphol 27:179–331

    Article  Google Scholar 

  • Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11(20):2600–2621. doi:10.1101/gad.11.20.2600

    Article  PubMed  CAS  Google Scholar 

  • Sasaki N, Yamauchi H, Tomohiro N, Agui T (2012) The telocentric tandem repeat at the p-arm is not conserved in Mus musculus subspecies. Gene. doi:10.1016/j.gene.2012.10.050

    Google Scholar 

  • Schueler MG, Dunn JM, Bird CP, Ross MT, Viggiano L, Program NCS, Rocchi M, Willard HF, Green ED (2005) Progressive proximal expansion of the primate X chromosome centromere. Proc Natl Acad Sci USA 102:10563–11568

    Article  PubMed  CAS  Google Scholar 

  • Searle JB, Wójcik JM (1998) Chromosomal evolution: the case of Sorex araneus. In: Wójcik JM, Wolsan M (eds) Evolution of shrews. Mammal Research Institute, Polish Academy of Sciences, Bialowieza, pp 219–268

    Google Scholar 

  • Sen S, Sharma T (1983) Role of constitutive heterochromatin in evolutionary divergence: results of chromosome banding and condensation inhibition studies in Mus musculus, Mus booduga and Mus dunni. Evolution 37:628–636

    Article  Google Scholar 

  • Shimada T, Aplin KP, Suzuki H (2010) Mus lepidoides (Muridae, Rodentia) of central Burma is a distinct species of potentially great evolutionary and biogeographic significance. Zool Sci 27:449–459

    Article  PubMed  Google Scholar 

  • Slamovits CH, Rossi MS (2002) Satellite DNA: agent of chromosomal evolution in mammals. A review. J Neotropical Mamm 9:297–308

    Google Scholar 

  • Song Y, Endepols S, Klemann N, Richter D, Matuschka F-R, Shih C-H, Nachman MW, Koh MH (2011) Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21:1296–1301

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Shimada T, Terashima M, Tsuchiya K, Aplin K (2004) Temporal, spatial, and ecological modes of evolution of Eurasian Mus based on mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 33:626–646

    Article  PubMed  CAS  Google Scholar 

  • Thomas JW, Schueler MG, Summers TJ, Blakesley RW, McDowell JC, Thomas PJ, Idol JR, Maduro VVB, Lee-Lin S-Q, Touchman JW, Bouffard GG, Beckstrom-Sternberg SM, Program NCS, Green ED (2003) Pericentromeric duplications in the laboratory mouse. Genome Res 13:55–63

    Article  PubMed  CAS  Google Scholar 

  • Trifonov VA, Kosyakova N, Romanenko SA, Stanyon R, Graphodatsky AS, Lieh T (2010) New insights into the karyotypic evolution in muroid rodents revealed by multicolor banding applying murine probes. Chromosom Res. doi:10.1007/s10577-010-9110-6

  • Van Vuuren BJ, Robinson TJ (2001) Retrieval of four adaptive lineage in duiker antelope: evidence from mitochondrial DNA sequences and fluorescence in situ hybridization. Mol Phylogenet Evol 20:409–425

    Article  PubMed  Google Scholar 

  • Veyrunes F, Dobigny G, Yang F, O'Brien PCM, Catalan J, Robinson TJ, Britton-Davidian J (2006) Phylogenomics of the genus Mus (Rodentia; Muridae): extensive genome repatterning is not restricted to the house mouse. Proc R Soc Lond B 273:2925–2934

    Article  Google Scholar 

  • Vidal-Rioja L, Semorile L, Bianchi NO, Padron J (1987) DNA composition in South American camelids. I. Characterization and in situ hybridization of satellite DNA fraction. Genetica 72:137–146

    Article  PubMed  CAS  Google Scholar 

  • Vissel B, Choo KH (1989) Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays—implications for recombination between nonhomologous chromosomes. Genomics 5(3):407–414. doi:10.1016/0888-7543(89)90003-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to A. Orth for animal samples, C. Desmaze for her technical assistance in CO-FISH and P. Kalitsis for providing the major, minor and TLC probes. The Southern blot complement could not have been performed without the enlightened and much appreciated assistance of C. Mari, P. Caminade, E. Douzery, B. de Massy, J.-C. Davidian and C. Benoist. We are grateful to Gunilla Rosenqvist for assistance in the completion of this work. The GDR 3047 (Cytogénomique Structurale et Evolutive) financed a travel grant for training in CO-FISH procedures. All cytogenetic analyses were performed in the Plateforme de Cytogénomique Evolutive of the SFR MEB in Montpellier. This study was supported by recurrent funding from the CNRS and UM2.This is publication ISEM no. 2013-008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Britton-Davidian.

Additional information

Communicated by Hiroshi Masumoto

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 149 kb)

High resolution

(TIFF 22668 kb)

ESM 2

(JPEG 164 kb)

High resolution

(TIFF 2486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazaux, B., Catalan, J., Justy, F. et al. Evolution of the structure and composition of house mouse satellite DNA sequences in the subgenus Mus (Rodentia: Muridea): a cytogenomic approach. Chromosoma 122, 209–220 (2013). https://doi.org/10.1007/s00412-013-0402-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-013-0402-4

Keywords

Navigation