Skip to main content
Log in

Global regulation of genome duplication in eukaryotes: an overview from the epifluorescence microscope

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In eukaryotes, DNA replication is initiated along each chromosome at multiple sites called replication origins. Locally, each replication origin is “licensed” or specified at the end of the M and the beginning of the G1 phases of the cell cycle. During the S phase when DNA synthesis takes place, origins are activated in stages corresponding to early and late-replicating domains. The staged and progressive activation of replication origins reflects the need to maintain a strict balance between the number of active replication forks and the rate at which DNA synthesis proceeds. This suggests that origin densities (frequency of initiation) and replication fork movement (rates of elongation) must be coregulated to guarantee the efficient and complete duplication of each subchromosomal domain. Emerging evidence supports this proposal and suggests that the ATM/ATR intra-S phase checkpoint plays an important role in the coregulation of initiation frequencies and rates of elongation. In this paper, we review recent results concerning the mechanisms governing the global regulation of DNA replication and discuss the roles these mechanisms play in maintaining genome stability during both a normal and perturbed S phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aleem E, Kiyokawa H, Kaldis P (2005) Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol 7(8):831–836

    Article  CAS  PubMed  Google Scholar 

  • Alexandrow MG, Hamlin JL (2005) Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J Cell Biol 168(6):875–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anachkova B, Djeliova V, Russev G (2005) Nuclear matrix support of DNA replication. J Cell Biochem 96(5):951–961

    Article  CAS  PubMed  Google Scholar 

  • Anglana M, Apiou F, Bensimon A, Debatisse M (2003) Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114(3):385–394

    Article  CAS  PubMed  Google Scholar 

  • Aparicio OM, Stout AM, Bell SP (1999) Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc Natl Acad Sci U S A 96(16):9130–9135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkley LR, Ohmori H, Vaziri C (2007) Integrating S-phase checkpoint signaling with trans-lesion synthesis of bulky DNA adducts. Cell Biochem Biophys 47(3):392–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechhoefer J, Marshall B (2007) How Xenopus laevis replicates DNA reliably even though its origins of replication are located and initiated stochastically. Phys Rev Lett 98(9):098105

    Article  PubMed  CAS  Google Scholar 

  • Berezney R, Coffey DS (1975) Nuclear protein matrix: association with newly synthesized DNA. Science 189(4199):291–293

    Article  CAS  PubMed  Google Scholar 

  • Berezney R, Dharani D, Dubey DD, Huberman JA (2000) Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108(8):471–484

    Article  CAS  PubMed  Google Scholar 

  • Blow JJ, Gillespie PJ, Francis D, Jackson DA (2001) Replication origins in Xenopus egg extract are 5–15 kilobases apart and are activated in clusters that fire at different times. J Cell Biol 152(1):15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenthal AB, Kriegstein HJ, Hogness DS (1974) The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb Symp Quant Biol 38:205–223

    Article  CAS  PubMed  Google Scholar 

  • Breier AM, Chatterji S, Cozzarelli NR (2004) Prediction of Saccharomyces cerevisiae replication origins. Genome Biol 5(4):R22

    Article  PubMed  PubMed Central  Google Scholar 

  • Breier AM, Weier HU, Cozzarelli NR (2005) Independence of replisomes in Escherichia coli chromosomal replication. Proc Natl Acad Sci U S A 102(11):3942–3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer BJ, Fangman WL (1993) Initiation at closely spaced replication origins in a yeast chromosome. Science 262(5140):1728–1731

    Article  CAS  PubMed  Google Scholar 

  • Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19(9):1040–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns J (1963) The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol 6:208–213

    Article  CAS  PubMed  Google Scholar 

  • Casper AM, Nghiem P, Arlt MF, Glover TW (2002) ATR regulates fragile site stability. Cell 111(6):779–789

    Article  CAS  PubMed  Google Scholar 

  • Cha RS, Kleckner N (2002) ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297(5581):602–606

    Article  CAS  PubMed  Google Scholar 

  • Clark W, Black EJ, MacLaren A, Kruse U, LaThangue N, Vogt PK, Gillespie DA (2000) v-Jun overrides the mitogen dependence of S-phase entry by deregulating retinoblastoma protein phosphorylation and E2F-pocket protein interactions as a consequence of enhanced cyclin E-cdk2 catalytic activity. Mol Cell Biol 7:2529–2542

    Article  Google Scholar 

  • Conti C, Sacca B, Herrick J, Lalou C, Pommier Y, Bensimon A (2007) Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell 18:3059–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czajkowsky DM, Liu J, Hamlin JL, Shao Z (2007) DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J Mol Biol 375:12–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies SL, North PS, Hickson ID (2007) Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat Struct Mol Biol 14(7):677–679

    Article  CAS  PubMed  Google Scholar 

  • Davidson IF, Li A, Blow JJ (2006) Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol Cell 24(3):433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debatisse M, El Achkar E, Dutrillaux B (2006) Common fragile sites nested at the interfaces of early and late-replicating chromosome bands: cis acting components of the G2/M checkpoint. Cell Cycle 5(6):578–581

    Article  CAS  PubMed  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre, ' M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d, 'Adda di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642

    Article  PubMed  CAS  Google Scholar 

  • Dijkwel PA, Hamlin JL (1995a) The Chinese hamster dihydrofolate reductase origin consists of multiple potential nascent-strand start sites. Mol Cell Biol 15(6):3023–3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkwel PA, Hamlin JL (1995b) Origins of replication and the nuclear matrix: the DHFR domain as a paradigm. Int Rev Cytol 162A:455–484

    CAS  PubMed  Google Scholar 

  • Dimitrova DS, Gilbert DM (1999) The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4(6):983–993

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova DS, Gilbert DM (2000) Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis. Nat Cell Biol 2:686–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrova DS, Prokhorova TA, Blow JJ, Todorov IT, Gilbert DM (2002) Mammalian nuclei become licensed for DNA replication during late telophase. J Cell Sci 115(Pt 1):51–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Djeliova V, Russev G, Anachkova B (2001) Distribution of DNA replication origins between matrix-attached and loop DNA in mammalian cells. J Cell Biochem 80(3):353–359

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451

    Article  CAS  PubMed  Google Scholar 

  • Dubey DD, Raman R (1987) Do sister forks of bidirectionally growing replicons proceed at unequal rates. Exp Cell Res 168(2):555–560

    Article  CAS  PubMed  Google Scholar 

  • Edenberg HJ, Huberman JA (1975) Eukaryotic chromosome replication. Annu Rev Genet 9:245–284

    Article  CAS  PubMed  Google Scholar 

  • Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC (2002) MCM2–7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem 277(36):33049–33057

    Article  CAS  PubMed  Google Scholar 

  • Eilen E, Hand R, Basilico C (1980) Decreased initiation of DNA synthesis in a temperature-sensitive mutant of hamster cells. J Cell Physiol 105(2):259–266

    Article  CAS  PubMed  Google Scholar 

  • Ermakova OV, Nguyen LH, Little RD, Chevillard C, Riblet R, Ashouian N, Birshtein BK, Schildkraut CL (1999) Evidence that a single replication fork proceeds from early to late replicating domains in the IgH locus in a non-B cell line. Mol Cell 3(3):321–330

    Article  CAS  PubMed  Google Scholar 

  • Eshaghi M, Karuturi RK, Li J, Chu Z, Liu ET, Liu J (2007) Global profiling of DNA replication timing and efficiency reveals that efficient replication/firing occurs late during S-phase in S. pombe. PLoS ONE 2(1):e722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feijoo C, Hall-Jackson C, Wu R, Jenkins D, Leitch J, Gilbert DM, Smythe C (2001) Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J Cell Biol 154(5):913–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis D, Davies ND, Bryant JA, Hughes SG, Sibson DR, Fitchett PN (1985) Effects of psoralen on replicon size and mean rate of DNA synthesis in partially synchronized cells of Pisum sativum L. Exp Cell Res 158(2):500–508

    Article  CAS  PubMed  Google Scholar 

  • Gewurz BE, Harper JW (2006) DNA-damage control: claspin destruction turns off the checkpoint. Curr Biol 16(21):R932–934

    Article  CAS  PubMed  Google Scholar 

  • Gilbert DM (2007) Replication origin plasticity, Taylor-made: inhibition vs recruitment of origins under conditions of replication stress. Chromosoma 116:341–347

    Article  PubMed  Google Scholar 

  • Glover TW (2006) Common fragile sites. Cancer Lett 232(1):4–12

    Article  CAS  PubMed  Google Scholar 

  • Griffiths TD, Ling SY (1987) Activation of alternative sites of replicon initiation in Chinese hamster cells exposed to ultraviolet light. Mutat Res 184(1):39–46

    CAS  PubMed  Google Scholar 

  • Grossi S, Decaillet C, Constantinou C (2007) Role of Fanconi anemia pathway in recovery from a hydroxyurea replication block. DNA Repair (in press)

  • Hand R (1975) Regulation of DNA replication on subchromosomal units of mammalian cells. J Cell Biol 64(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Katou Y, Itoh T, Tazumi A, Yamada Y, Takahashi T, Nakagawa T, Shirahige K, Masukata H (2007) Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J 26(5):1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffernan TP, Unsal-Kacmaz K, Heinloth AN, Simpson DA, Paules RS, Sancar A, Cordeiro-Stone M, Kaufmann WK (2007) Cdc7-Dbf4 and the human S checkpoint response to UVC. J Biol Chem 282(13):9458–9468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heichinger C, Penkett CJ, Bahler J, Nurse P (2006) Genome-wide characterization of fission yeast DNA replication origins. EMBO J 25(21):5171–5179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrick J, Bensimon A (1999) Single molecule analysis of DNA replication. Biochimie 81(8–9):859–871

    Article  CAS  PubMed  Google Scholar 

  • Herrick J, Sclavi B (2007) Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol 63(1):22–34

    Article  CAS  PubMed  Google Scholar 

  • Herrick J, Stanislawski P, Hyrien O, Bensimon A (2000) Replication fork density increases during DNA synthesis in X. laevis egg extracts. J Mol Biol 300(5):1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Herrick J, Jun S, Bechhoefer J, Bensimon A (2002) Kinetic model of DNA replication in eukaryotic organisms. J Mol Biol 320(4):741–750

    Article  CAS  PubMed  Google Scholar 

  • Holmquist G, Gray M, Porter T, Jordan J (1982) Characterization of Giemsa dark- and light-band DNA. Cell 31(1):121–129

    Article  CAS  PubMed  Google Scholar 

  • Housman D, Huberman JA (1975) Changes in the rate of DNA replication fork movement during S phase in mammalian cells. J Mol Biol 94(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Zhou Z, Elledge SJ (1998) The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94(5):595–605

    Article  CAS  PubMed  Google Scholar 

  • Huberman JA, Riggs AD (1966) Autoradiography of chromosomal DNA fibers from Chinese hamster cells. Proc Natl Acad Sci U S A 55(3):599–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyrien O, Marheineke K, Goldar A (2003) Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. BioEssays 25(2):116–125

    Article  CAS  PubMed  Google Scholar 

  • Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140(6):1285–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun S, Herrick J, Bensimon A, Bechhoefer J (2004) Persistence length of chromatin determines origin spacing in Xenopus early-embryo DNA replication: quantitative comparisons between theory and experiment. Cell Cycle 3(2):223–229

    Article  CAS  PubMed  Google Scholar 

  • Kaneko YS, Watanabe N, Morisaki H, Akita H, Fujimoto A, Tominaga K, Terasawa M, Tachibana A, Ikeda K (1999) Cell-cycle-dependent and ATM-independent expression of human Chk1 kinase. Oncogene 18(25):3673–3681

    Article  CAS  PubMed  Google Scholar 

  • Kidd AD, Francis D, Bennett MD (1989) Replicon size and rate of DNA replication fork movement are correlated in grasses. Exp Cell Res 184(1):262–267

    Article  CAS  PubMed  Google Scholar 

  • Kitamura E, Blow JJ, Tanaka TU (2006) Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 125:1297–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klevecz RR, Keniston BA (1975) The temporal structure of S phase. Cell 5(2):195–203

    Article  CAS  PubMed  Google Scholar 

  • Krämer A, Mailand N, Lukas C, Syljuåsen RG, Wilkinson CJ, Nigg EA, Bartek J, Lukas J (2004) Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 6(9):884–891

    Article  PubMed  CAS  Google Scholar 

  • Kuschak TI, Kuschak BC, Taylor CL, Wright JA, Wiener F, Mai S (2002) c-Myc initiates illegitimate replication of the ribonucleotide reductase R2 gene. Oncogene 21(6):909–920

    Article  CAS  PubMed  Google Scholar 

  • Le Beau MM, Rassool FV, Neilly ME, Espinosa R 3rd, Glover TW, Smith DI, McKeithan TW (1998) Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction. Hum Mol Genet 7(4):755–761

    Article  PubMed  Google Scholar 

  • Lebofsky R, Heilig R, Sonnleitner M, Weissenbach J, Bensimon A (2006) DNA replication origin interference increases the spacing between initiation events in human cells. Mol Biol Cell 17(12):5337–5345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaitre JM, Danis E, Pasero P, Vassetzky Y, Mechali M (2005) Mitotic remodeling of the replicon and chromosome structure. Cell 123(5):787–801

    Article  CAS  PubMed  Google Scholar 

  • Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR (1997) Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387(6631):422–426 Erratum in: Nature 1997 Jun 26;387(6636):932

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt H, Rahn HP, Weinzierl P, Sporbert A, Cremer T, Zink D, Cardoso MC (2000) Dynamics of DNA replication factories in living cells. J Cell Biol 149(2):271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Chen J, Solessio E, Gilbert DM (2003) Spatial distribution and specification of mammalian replication origins during G1 phase. J Cell Biol 161(2):257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Dang CV (1999) c-Myc overexpression uncouples DNA replication from mitosis. Mol Cell Biol 19(8):5339–5351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Barkley LR, Day T, Bi X, Slater DM, Alexandrow MG, Nasheuer HP, Vaziri C (2006) The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2-independent mechanism. J Biol Chem 281(41):30631–30644

    Article  CAS  PubMed  Google Scholar 

  • Lubelsky Y, Reuven N, Shaul Y (2005) Autorepression of rfx1 gene expression: functional conservation from yeast to humans in response to DNA replication arrest. Mol Cell Biol 25(23):10665–10673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupardus PJ, Byun T, Yee MC, Hekmat-Nejad M, Cimprich KA (2002) A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. Genes Dev 16(18):2327–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Samarabandu J, Devdhar RS, Acharya R, Cheng PC, Meng C, Berezney R (1998) Spatial and temporal dynamics of DNA replication sites in mammalian cells. J Cell Biol 143(6):1415–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maclaren A, Clark W, Black EJ, Gregory D, Fujii H, Gillespie DA (2003) v-Jun stimulates both cdk2 kinase activity and G1/S progression via transcriptional repression of p21 CIP1. Oncogene 22(16):2383–2395

    Article  CAS  PubMed  Google Scholar 

  • MacDougall CA, Byun TS, Van C, Yee MC, Cimprich KA (2007) The structural determinants of checkpoint activation. Genes Dev 21(8):898–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mailand N, Falck J, Lukas C, Syljuâsen RG, Welcker M, Bartek J, Lukas J (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288(5470):1425–1429

    Article  CAS  PubMed  Google Scholar 

  • Malinsky J, Koberna K, Stanek D, Masata M, Votruba I, Raska I (2001) The supply of exogenous deoxyribonucleotides accelerates the speed of the replication fork in early S-phase. J Cell Sci 114(Pt 4):747–750

    CAS  PubMed  Google Scholar 

  • Mamely I, van Vugt MA, Smits VA, Semple JI, Lemmens B, Perrakis A, Medema RH, Freire R (2006) Polo-like kinase-1 controls proteasome-dependent degradation of claspin during checkpoint recovery. Curr Biol 16(19):1950–1955

    Article  CAS  PubMed  Google Scholar 

  • Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA (1992) Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci 103(Pt 3):857–862

    CAS  PubMed  Google Scholar 

  • Marheineke K, Hyrien O (2001) Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts. J Biol Chem 276(20):17092–17100

    Article  CAS  PubMed  Google Scholar 

  • Marheineke K, Hyrien O (2004) Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint. J Biol Chem 279(27):28071–28081

    Article  CAS  PubMed  Google Scholar 

  • Marheineke K, Hyrien O, Krude T (2005) Visualization of bidirectional initiation of chromosomal DNA replication in a human cell free system. Nucleic Acids Res 33(21):6931–6941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura I, Tanaka H, Kanakura Y (2003) E2F1 and c-Myc in cell growth and death. Cell Cycle 2(4):333–338

    Article  CAS  PubMed  Google Scholar 

  • Maya-Mendoza A, Petermann E, Gillespie DA, Caldecott KW, Jackson DA (2007) Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J 26(11):2719–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzuca S, Bitonti MB, Innocenti AM, Francis D (2000) Inactivation of DNA replication origins by the cell cycle regulator, trigonelline, in root meristems of Lactuca sativa. Planta 211(1):127–132

    Article  CAS  PubMed  Google Scholar 

  • Merrick CJ, Jackson D, Diffley JF (2004) Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279(19):20067–20075

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Seiler JA, Burhans WC (2003) Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiation-induced checkpoints. J Biol Chem 278(6):4295–4304

    Article  CAS  PubMed  Google Scholar 

  • Mills AD, Blow JJ, White JG, Amos WB, Wilcock D, Laskey RA (1989) Replication occurs at discrete foci spaced throughout nuclei replicating in vitro. J Cell Sci 94(Pt 3):471–477

    PubMed  Google Scholar 

  • Nakamura H, Morita T, Sato C (1986) Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp Cell Res 165(2):291–297

    Article  CAS  PubMed  Google Scholar 

  • Natale DA, Li CJ, Sun WH, DePamphilis ML (2000) Selective instability of Orc1 protein accounts for the absence of functional origin recognition complexes during the M-G(1) transition in mammals. EMBO J 19(11):2728–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niida H, Tsuge S, Katsuno Y, Konishi A, Takeda N, Nakanishi M (2005) Depletion of Chk1 leads to premature activation of Cdc2-cyclin B and mitotic catastrophe. J Biol Chem 280(47):39246–39252

    Article  CAS  PubMed  Google Scholar 

  • Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M (2007) Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol 7:2572–2581

    Article  CAS  Google Scholar 

  • Nordlund P, Reichard P (2006) Ribonucleotide reductases. Annu Rev Biochem 75:681–706

    Article  CAS  PubMed  Google Scholar 

  • Norio P, Kosiyatrakul S, Yang Q, Guan Z, Brown NM, Thomas S, Riblet R, Schildkraut CL (2005) Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol Cell 20(4):575–587

    Article  CAS  PubMed  Google Scholar 

  • Patel PK, Arcangioli B, Baker SP, Bensimon A, Rhind N (2006) DNA replication origins fire stochastically in fission yeast. Mol Biol Cell 17(1):308–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petermann E, Maya-Mendoza A, Zachos G, Gillespie DA, Jackson DA, Caldecott KW (2006) Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol Cell Biol 26(8):3319–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillaire MJ, Betous R, Conti C, Czaplicki J, Pasero P, Bensimon A, Cazaux C, Hoffmann JS (2007) Upregulation of error-prone DNA polymerases beta and kappa slows down fork progression without activating the replication checkpoint. Cell Cycle 6(4):471–477

    Article  CAS  PubMed  Google Scholar 

  • Rao VA, Conti C, Guirouilh-Barbat J, Nakamura A, Miao ZH, Davies SL, Sacca B, Hickson ID, Bensimon A, Pommier Y (2007) Endogenous {gamma}-H2AX-ATM-Chk2 checkpoint activation in Bloom's syndrome helicase deficient cells is related to DNA replication arrested forks. Mol Cancer Res 5(7):713–724

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-López AM, Jackson DA, Iborra F, Cox LS (2002) Asymmetry of DNA replication fork progression in Werner's syndrome. Aging Cell 1(1):30–39

    Article  PubMed  Google Scholar 

  • Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277(5331):1497–1501

    Article  CAS  PubMed  Google Scholar 

  • Santocanale C, Diffley JF (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395:615–618

    Article  CAS  PubMed  Google Scholar 

  • Seiler JA, Conti C, Syed A, Aladjem MI, Pommier Y (2007) The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and -DNA fiber analyses. Mol Cell Biol 27:5806–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semple JW, Da-Silva LF, Jervis EJ, Ah-Kee J, Al-Attar H, Kummer L, Heikkila JJ, Pasero P, Duncker BP (2006) An essential role for Orc6 in DNA replication through maintenance of pre-replicative complexes. EMBO J 25(21):5150–5158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shechter D, Costanzo V, Gautier J (2004) ATR and ATM regulate the timing of DNA replication origin firing. Nat Cell Biol 6(7):648–655

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Pasero P, Gasser SM (2002) ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev 6(24):3236–3252

    Article  CAS  Google Scholar 

  • Shirahige K, Hori Y, Shiraishi K, Yamashita M, Takahashi K, Obuse C, Tsurimoto T, Yoshikawa H (1998) Regulation of DNA-replication origins during cell-cycle progression. Nature 395(6702):618–621

    Article  CAS  PubMed  Google Scholar 

  • Sorensen CS, Syljuasen RG, Lukas J, Bartek J (2004) ATR, claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle 3(7):941–945

    Article  CAS  PubMed  Google Scholar 

  • Sporbert A, Gahl A, Ankerhold R, Leonhardt H, Cardoso MC (2002) DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol Cell 10(6):1355–1365

    Article  CAS  PubMed  Google Scholar 

  • Stano NM, Jeong YJ, Donmez I, Tummalapalli P, Levin MK, Patel SS (2005) DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 435(7040):370–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syljuasen RG, Sorensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, Helleday T, Sehested M, Lukas J, Bartek J (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25(9):3553–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takebayashi SI, Manders EM, Kimura H, Taguchi H, Okumura K (2001) Mapping sites where replication initiates in mammalian cells using DNA fibers. Exp Cell Res 271(2):263–268

    Article  CAS  PubMed  Google Scholar 

  • Taylor JH (1977) Increase in DNA replication sites in cells held at the beginning of S phase. Chromosoma 62(4):291–300

    Article  CAS  PubMed  Google Scholar 

  • Teer JK, Machida YJ, Labit H, Novac O, Hyrien O, Marheineke K, Zannis-Hadjopoulos M, Dutta A (2006) Proliferating human cells hypomorphic for origin recognition complex 2 and pre-replicative complex formation have a defect in p53 activation and Cdk2 kinase activation. J Biol Chem 281(10):6253–6260

    Article  CAS  PubMed  Google Scholar 

  • Tenca P, Brotherton D, Montagnoli A, Rainoldi S, Albanese C, Santocanale C (2007) Cdc7 is an active kinase in human cancer cells undergoing replication stress. J Biol Chem 282(1):208–215

    Article  CAS  PubMed  Google Scholar 

  • Torres-Rosell J, De Piccoli G, Cordon-Preciado V, Farmer S, Jarmuz A, Machin F, Pasero P, Lisby M, Haber JE, Aragon L (2007) Anaphase onset before complete DNA replication with intact checkpoint responses. Science 315(5817):1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Tourriere H, Versini G, Cordon-Preciado V, Alabert C, Pasero P (2005) Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell 19(5):699–706

    Article  CAS  PubMed  Google Scholar 

  • Vaziri C, Saxena S, Jeon Y, Lee C, Murata K, Machida Y, Wagle N, Hwang DS, Dutta AA (2003) p53-dependent checkpoint pathway prevents rereplication. Mol Cell 11(4):997–1008

    Article  CAS  PubMed  Google Scholar 

  • Versini G, Comet I, Wu M, Hoopes L, Schwob E, Pasero P (2003) The yeast Sgs1 helicase is differentially required for genomic and ribosomal DNA replication. EMBO J 22(8):1939–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters RA, Tobey RA, Ratliff RL (1973) Cell-cycle-dependent variations of deoxyribonucleoside triphosphate pools in Chinese hamster cells. Biochim Biophys Acta 319(3):336–347

    Article  CAS  PubMed  Google Scholar 

  • Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ (2006) Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173(5):673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JR, Gilbert DM (1996) A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science 271(5253):1270–1272

    Article  CAS  PubMed  Google Scholar 

  • Yurov YB (1979) The rate of fork movement during DNA replication in mammalian cells. Chromosoma 74(3):347–353

    Article  CAS  PubMed  Google Scholar 

  • Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F, Abraham RT (2005) Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell 19(5):607–618

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Alvarez C, Doll R, Kurata H, Schebye XM, Parry D, Lees E (2005) Human CDK2 inhibition modifies the dynamics of chromatin-bound minichromosome maintenance complex and replication protein A. Cell Cycle 4(9):1254–1263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank John Bechhoefer for the comments and careful reading of the manuscript, and Bianca Sclavi, Christophe Henry, Pierre Walrafen, Jean-Pascal Capp, and Jun Komatsu for the helpful discussions. The authors would also like to thank the three anonymous reviewers whose comments significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Herrick.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrick, J., Bensimon, A. Global regulation of genome duplication in eukaryotes: an overview from the epifluorescence microscope. Chromosoma 117, 243–260 (2008). https://doi.org/10.1007/s00412-007-0145-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0145-1

Keywords

Navigation