Skip to main content
Log in

Integrating S-phase checkpoint signaling with trans-lesion synthesis of bulky DNA adducts

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou, B. B., & Elledge, S. J. (2000). The DNA damage response: Putting checkpoints in perspective. Nature, 408, 433–439.

    Article  PubMed  CAS  Google Scholar 

  2. Kastan, M. B., & Bartek, J. (2004). Cell-cycle checkpoints and cancer. Nature, 432, 316–323.

    Article  PubMed  CAS  Google Scholar 

  3. Nyberg, K. A., Michelson, R. J., Putnam, C. W., & Weinert, T. A. (2002). Toward maintaining the genome: DNA damage and replication checkpoints. Annual Review of Genetics, 36, 617–656.

    Article  PubMed  CAS  Google Scholar 

  4. Baum, E. J. (1978). Occurrence and surveillance of polycyclic aromatic hydrocarbons. NY: Academic Press.

    Google Scholar 

  5. Conney, A. H. (1982). Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. Cancer Research, 42, 4875–4917.

    PubMed  CAS  Google Scholar 

  6. Thakker, D. R., Yagi, H., Lu, A. Y., Levin, W., & Conney, A. H. (1976). Metabolism of benzo[a]pyrene: Conversion of (+/−)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene to highly mutagenic 7,8-diol-9,10-epoxides. Proceedings of the National Academy of Sciences of the United States of America, 73, 3381–3385.

    Article  PubMed  CAS  Google Scholar 

  7. Kapitulnik, J., Wislocki, P. G., Levin, W., Yagi, H., Jerina, D. M., & Conney, A. H. (1978). Tumorigenicity studies with diol-epoxides of benzo(a)pyrene which indicate that (+/−)-trans-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydr obenzo(a)pyrene is an ultimate carcinogen in newborn mice. Cancer Research, 38, 354–358.

    PubMed  CAS  Google Scholar 

  8. Dipple, A. (1995). DNA adducts of chemical carcinogens. Carcinogenesis, 16, 437–441.

    Article  PubMed  CAS  Google Scholar 

  9. Dipple, A., Khan, Q. A., Page, J. E., Ponten, I., & Szeliga, J. (1999). DNA reactions, mutagenic action and stealth properties of polycyclic aromatic hydrocarbon carcinogens (review). International Journal of Oncology, 14, 103–111.

    PubMed  CAS  Google Scholar 

  10. Shukla, R., Liu, T., Geacintov, N. E., & Loechler, E. L. (1997). The major, N2-dG adduct of (+)-anti-B[a]PDE shows a dramatically different mutagenic specificity (predominantly, G –> A). in a 5′-CGT-3′ sequence context. Biochemistry, 36, 10256–10261.

    Article  PubMed  CAS  Google Scholar 

  11. Hanrahan, C. J., Bacolod, M. D., Vyas, R. R., Liu, T., Geacintov, N. E., Loechler, E. L., & Basu, A. K. (1997). Sequence specific mutagenesis of the major (+)-anti-benzo[a]pyrene diol epoxide-DNA adduct at a mutational hot spot in vitro and in Escherichia coli cells. Chemical Research in Toxicology, 10, 369–377.

    Article  PubMed  CAS  Google Scholar 

  12. Kozack, R. E., Shukla, R., & Loechler, E. L. (1999). A hypothesis for what conformation of the major adduct of (+)-anti-B[a]PDE (N2-dG). causes G–>T versus G–>A mutations based upon a correlation between mutagenesis and molecular modeling results. Carcinogenesis, 20, 95–102.

    Article  PubMed  CAS  Google Scholar 

  13. Hollstein, M., Sidransky, D., Vogelstein, B., & Harris, C. C. (1991). p53 mutations in human cancers. Science, 253, 49–53.

    Article  PubMed  CAS  Google Scholar 

  14. Krawczak, M., & Cooper, D. N. (1998). p53 mutations, benzo[a]pyrene and lung cancer. Mutagenesis, 13, 319–320.

    Article  PubMed  CAS  Google Scholar 

  15. Rodin, S. N., & Rodin, A. S. (2000). Human lung cancer and p53: The interplay between mutagenesis and selection. Proceedings of the National Academy of Sciences of the United States of America, 97, 12244–12249.

    Article  PubMed  CAS  Google Scholar 

  16. Hainaut, P., & Pfeifer, G. P. (2001). Patterns of p53 G–>T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis, 22, 367–374.

    Article  PubMed  CAS  Google Scholar 

  17. Denissenko, M. F., Pao, A., Tang, M., & Pfeifer, G. P. (1996). Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science, 274, 430–432.

    Article  PubMed  CAS  Google Scholar 

  18. Denissenko, M. F., Venkatachalam, S., Ma, Y. H., & Wani, A. A. (1996). Site-specific induction and repair of benzo[a]pyrene diol epoxide DNA damage in human H-ras protooncogene as revealed by restriction cleavage inhibition. Mutation Research, 363, 27–42.

    PubMed  Google Scholar 

  19. Woodhead, A. D., Setlow, R. B., & Tanaka, M. (1999). Environmental factors in nonmelanoma and melanoma skin cancer. Journal of Epidemiology, 9, S102–S114.

    PubMed  CAS  Google Scholar 

  20. Pfeifer, G. P., You, Y. H., & Besaratinia, A. (2005). Mutations induced by ultraviolet light. Mutation Research, 571, 19–31.

    PubMed  CAS  Google Scholar 

  21. Tornaletti, S., Rozek, D., & Pfeifer, G. P. (1993). The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer. Oncogene, 8, 2051–2057.

    PubMed  CAS  Google Scholar 

  22. You, Y. H., Szabo, P. E., & Pfeifer, G. P. (2000). Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in UVB-induced mouse skin tumors. Carcinogenesis, 21, 2113–2117.

    Article  PubMed  CAS  Google Scholar 

  23. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., & Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 73, 39–85.

    Article  PubMed  CAS  Google Scholar 

  24. Lopes, M., Cotta-Ramusino, C., Pellicioli, A., Liberi, G., Plevani, P., Muzi-Falconi, M., Newlon, C. S., & Foiani, M. (2001). The DNA replication checkpoint response stabilizes stalled replication forks. Nature, 412, 557–561.

    Article  PubMed  CAS  Google Scholar 

  25. Brown, E. J. (2003). The ATR-independent DNA replication checkpoint. Cell Cycle, 2, 188–189.

    PubMed  CAS  Google Scholar 

  26. Brown, E. J., & Baltimore, D. (2003). Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes and Development, 17, 615–628.

    Article  PubMed  CAS  Google Scholar 

  27. Rhind, N. (2006). DNA replication timing: Random thoughts about origin firing. Nature Cell Biology, 8, 1313–1316.

    Article  PubMed  CAS  Google Scholar 

  28. Lucas, I., & Feng, W. (2003). The essence of replication timing: Determinants and significance. Cell Cycle, 2, 560–563.

    PubMed  CAS  Google Scholar 

  29. Gilbert, D. M. (2004). In search of the holy replicator. Nature Reviews of Molecular Cell Biology, 5, 848–855.

    Article  CAS  Google Scholar 

  30. Gilbert, D. M. (2002). Replication timing and transcriptional control: Beyond cause and effect. Current Opinion in Cell Biology, 14, 377–383.

    Article  PubMed  CAS  Google Scholar 

  31. Blow, J. J., & Dutta, A. (2005). Preventing re-replication of chromosomal DNA. Nature Reviews of Molecular Cell Biology, 6, 476–486.

    Article  CAS  Google Scholar 

  32. Takeda, D. Y., & Dutta, A. (2005). DNA replication and progression through S phase. Oncogene, 24, 2827–2843.

    Article  PubMed  CAS  Google Scholar 

  33. Bell, S. P., & Dutta, A. (2002). DNA replication in eukaryotic cells. Annual Review of Biochemistry, 71, 333–374.

    Article  PubMed  CAS  Google Scholar 

  34. Kukimoto, I., Igaki, H., & Kanda, T. (1999). Human CDC45 protein binds to minichromosome maintenance 7 protein and the p70 subunit of DNA polymerase alpha. European Journal of Biochemistry, 265, 936–943.

    Article  PubMed  CAS  Google Scholar 

  35. Hubscher, U., Maga, G., & Spadari, S. (2002). Eukaryotic DNA polymerases. Annual Review of Biochemistry, 71, 133–163.

    Article  PubMed  CAS  Google Scholar 

  36. Tsurimoto, T., & Stillman, B. (1991). Replication factors required for SV40 DNA replication in vitro. II. Switching of DNA polymerase alpha and delta during initiation of leading and lagging strand synthesis. The Journal of Biological Chemistry, 266, 1961–1968.

    PubMed  CAS  Google Scholar 

  37. Tsurimoto, T., & Stillman, B. (1991). Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. The Journal of Biological Chemistry, 266, 1950–1960.

    PubMed  CAS  Google Scholar 

  38. Moyer, S. E., Lewis, P. W., & Botchan, M. R. (2006). Isolation of the Cdc45/Mcm2–7/GINS (CMG). complex, a candidate for the eukaryotic DNA replication fork helicase. Proceedings of the National Academy of Sciences of the United States of America, 103, 10236–10241.

    Article  PubMed  CAS  Google Scholar 

  39. Aparicio, T., Ibarra, A., & Mendez, J. (2006). Cdc45-MCM-GINS, a new power player for DNA replication. Cell Division, 1, 18.

    Article  PubMed  CAS  Google Scholar 

  40. Zegerman, P., Diffley, J. F. (2006). Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature.

  41. Masumoto, H., Muramatsu, S., Kamimura, Y., & Araki, H. (2002). S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature, 415, 651–655.

    Article  PubMed  CAS  Google Scholar 

  42. Tanaka, S., Umemori, T., Hirai, K., Muramatsu, S., Kamimura, Y. and Araki, H. (2006). CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature.

  43. Sheu, Y. J., & Stillman, B. (2006). Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Molecular Cell, 24, 101–113.

    Article  PubMed  CAS  Google Scholar 

  44. Masai, H., Taniyama, C., Ogino, K., Matsui, E., Kakusho, N., Matsumoto, S., Kim, J. M., Ishii, A., Tanaka, T., & Kobayashi, T. et al. (2006). Phosphorylation of MCM4 by Cdc7 Kinase Facilitates Its Interaction with Cdc45 on the Chromatin. The Journal of Biological Chemistry, 281, 39249–39261.

    Article  PubMed  CAS  Google Scholar 

  45. Cho, W. H., Lee, Y. J., Kong, S. I., Hurwitz, J., & Lee, J. K. (2006). CDC7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein. Proceedings of the National Academy of Sciences of the United States of America, 103, 11521–11526.

    Article  PubMed  CAS  Google Scholar 

  46. Cordeiro-Stone, M., Boyer, J. C., Smith, B. A., & Kaufmann, W. K. (1986). Effect of benzo[a]pyrene-diol-epoxide-I on growth of nascent DNA in synchronized human fibroblasts. Carcinogenesis, 7, 1775–1781.

    Article  PubMed  CAS  Google Scholar 

  47. Kaufmann, W. K., & Cleaver, J. E. (1981). Mechanisms of inhibition of DNA replication by ultraviolet light in normal human and xeroderma pigmentosum fibroblasts. Journal of Molecular Biology, 149, 171–187.

    Article  PubMed  CAS  Google Scholar 

  48. Cleaver, J. E., Kaufmann, W. K., Kapp, L. N., & Park, S. D. (1983). Replicon size and excision repair as factors in the inhibition and recovery of DNA synthesis from ultraviolet damage. Biochim Biophys Acta, 739, 207–215.

    PubMed  CAS  Google Scholar 

  49. Heffernan, T. P., Simpson, D. A., Frank, A. R., Heinloth, A. N., Paules, R. S., Cordeiro-Stone, M., & Kaufmann, W. K. (2002). An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Molecular Cell Biology, 22, 8552–8561.

    Article  CAS  Google Scholar 

  50. Merrick, C. J., Jackson, D., & Diffley, J. F. (2004). Visualization of altered replication dynamics after DNA damage in human cells. Journal of Biological Chemistry, 279, 20067–20075.

    Article  PubMed  CAS  Google Scholar 

  51. Chastain, P. D., 2nd Heffernan, T. P., Nevis, K. R., Lin, L., Kaufmann, W. K., Kaufman, D. G., & Cordeiro-Stone, M. (2006). Checkpoint regulation of replication dynamics in UV-irradiated human cells. Cell Cycle, 5, 2160–2167.

    Google Scholar 

  52. Huang, T. T., Nijman, S. M., Mirchandani, K. D., Galardy, P. J., Cohn, M. A., Haas, W., Gygi, S. P., Ploegh, H. L., Bernards, R., & D’Andrea, A. D. (2006). Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature of Cell Biology, 8, 339–347.

    CAS  Google Scholar 

  53. Bendjennat, M., Boulaire, J., Jascur, T., Brickner, H., Barbier, V., Sarasin, A., Fotedar, A., & Fotedar, R. (2003). UV irradiation triggers ubiquitin-dependent degradation of p21(WAF1). to promote DNA repair. Cell, 114, 599–610.

    Article  PubMed  CAS  Google Scholar 

  54. Agner, J., Falck, J., Lukas, J., & Bartek, J. (2005). Differential impact of diverse anticancer chemotherapeutics on the Cdc25A-degradation checkpoint pathway. Experimental Cell Research, 302, 162–169.

    Article  PubMed  CAS  Google Scholar 

  55. Guo, N., Faller, D. V., & Vaziri, C. (2002). Carcinogen-induced S-phase arrest is Chk1 mediated and caffeine sensitive. Cell Growth Differentiation, 13, 77–86.

    PubMed  CAS  Google Scholar 

  56. Reinhardt, H. C., Aslanian, A. S., Lees, J. A., & Yaffe, M. B. (2007). p53-Deficient Cells Rely on ATM- and ATR-Mediated Checkpoint Signaling through the p38MAPK/MK2 Pathway for Survival after DNA Damage. Cancer Cell, 11, 175–189.

    Article  PubMed  CAS  Google Scholar 

  57. Cortez, D. (2005). Unwind and slow down: Checkpoint activation by helicase and polymerase uncoupling. Genes Development, 19, 1007–1012.

    Article  PubMed  CAS  Google Scholar 

  58. Bartek, J., & Mailand, N. (2006). TOPping up ATR activity. Cell, 124, 888–890.

    Article  PubMed  CAS  Google Scholar 

  59. Bartek, J., Lukas, C., & Lukas, J. (2004). Checking on DNA damage in S phase. Nature Reviews. Molecular cell biology, 5, 792–804.

    Article  PubMed  CAS  Google Scholar 

  60. Chini, C. C., & Chen, J. (2004). Claspin, a regulator of Chk1 in DNA replication stress pathway. DNA Repair (Amst), 3, 1033–1037.

    Article  CAS  Google Scholar 

  61. Byun, T. S., Pacek, M., Yee, M. C., Walter, J. C., & Cimprich, K. A. (2005). Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes and Development, 19, 1040–1052.

    Article  PubMed  CAS  Google Scholar 

  62. Falck, J., Coates, J., & Jackson, S. P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature, 434, 605–611.

    Article  PubMed  CAS  Google Scholar 

  63. Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 300, 1542–1548.

    Article  PubMed  CAS  Google Scholar 

  64. Ball, H. L., & Cortez, D. (2005). ATRIP oligomerization is required for ATR-dependent checkpoint signaling. The Journal of Biological Chemistry, 280, 31390–31396.

    Article  PubMed  CAS  Google Scholar 

  65. Ball, H. L., Myers, J. S., & Cortez, D. (2005). ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Molecular Biology of the Cell, 16, 2372–2381.

    Article  PubMed  CAS  Google Scholar 

  66. Kumagai, A., & Dunphy, W. G. (2006). How cells activate ATR. Cell Cycle, 5, 1265–1268.

    PubMed  CAS  Google Scholar 

  67. Kumagai, A., Lee, J., Yoo, H. Y., & Dunphy, W. G. (2006). TopBP1 activates the ATR-ATRIP complex. Cell, 124, 943–955.

    Article  PubMed  CAS  Google Scholar 

  68. Liu, S., Bekker-Jensen, S., Mailand, N., Lukas, C., Bartek, J., & Lukas, J. (2006). Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Molecular Biology of the Cell, 26, 6056–6064.

    Article  CAS  Google Scholar 

  69. Weiss, R. S., Leder, P., & Vaziri, C. (2003). Critical role for mouse Hus1 in an S-phase DNA damage cell cycle checkpoint. Molecular Biology of the Cell, 23, 791–803.

    Article  CAS  Google Scholar 

  70. Weiss, R. S., Matsuoka, S., Elledge, S. J., & Leder, P. (2002). Hus1 acts upstream of chk1 in a mammalian DNA damage response pathway. Current Biology, 12, 73–77.

    Article  PubMed  CAS  Google Scholar 

  71. Zou, L., Cortez, D., & Elledge, S. J. (2002). Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Development, 16, 198–208.

    Article  PubMed  CAS  Google Scholar 

  72. Ellison, V., & Stillman, B. (2003). Biochemical characterization of DNA damage checkpoint complexes: Clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biology, 1, E33.

    Article  PubMed  CAS  Google Scholar 

  73. Unsal-Kacmaz, K., Mullen, T. E., Kaufmann, W. K., & Sancar, A. (2005). Coupling of human circadian and cell cycles by the timeless protein. Molecular Cell Biology, 25, 3109–3116.

    Article  CAS  Google Scholar 

  74. Chou, D. M., & Elledge, S. J. (2006). Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proceedings of the National Academy of Sciences of the United States of America A, 103, 18143–18147.

    Article  CAS  Google Scholar 

  75. Yoshizawa-Sugata, N., & Masai, H. (2006). Human tim/timeless-interacting protein, Tipin, is required for efficient progression of S phase and DNA replication checkpoint. Journal of Biological Chemistry.

  76. Unsal-Kacmaz, K., Chastain, P. D., Qu, P. P., Minoo, P., Cordeiro-Stone, M., Sancar, A., & Kaufmann, W. K. (2007). The human Tim/Tipin complex coordinates an intra-S checkpoint response to UV that slows replication fork displacement. Molecular Cell Biology.

  77. Gotter, A. L., Suppa, C. & Emanuel, B. S. (2006). Mammalian TIMELESS and tipin are evolutionarily conserved replication fork-associated factors. Journal of Molecular Biology.

  78. Liu, P., Barkley, L. R., Day, T., Bi, X., Slater, D. M., Alexandrow, M. G., Nasheuer, H. P., & Vaziri, C. (2006). The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25a/Cdk2-independent mechanism. Journal of Biological Chemistry.

  79. Mailand, N., Falck, J., Lukas, C., Syljuasen, R. G., Welcker, M., Bartek, J., & Lukas, J. (2000). Rapid destruction of human Cdc25A in response to DNA damage. Science, 288, 1425–1429.

    Article  PubMed  CAS  Google Scholar 

  80. Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J., & Lukas, J. (2001). The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature, 410, 842–847.

    Article  PubMed  CAS  Google Scholar 

  81. Sorensen, C. S., Syljuasen, R. G., Falck, J., Schroeder, T., Ronnstrand, L., Khanna, K. K., Zhou, B. B., Bartek, J., & Lukas, J. (2003). Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell, 3, 247–258.

    Article  PubMed  CAS  Google Scholar 

  82. Jin, J., Shirogane, T., Xu, L., Nalepa, G., Qin, J., Elledge, S. J., & Harper, J. W. (2003). SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Development, 17, 3062–3074.

    Article  PubMed  CAS  Google Scholar 

  83. Sorensen, C. S., Syljuasen, R. G., Lukas, J., & Bartek, J. (2004). ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle, 3, 941–945.

    PubMed  CAS  Google Scholar 

  84. Busino, L., Chiesa, M., Draetta, G. F., & Donzelli, M. (2004). Cdc25A phosphatase: Combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene, 23, 2050–2056.

    Article  PubMed  CAS  Google Scholar 

  85. Busino, L., Donzelli, M., Chiesa, M., Guardavaccaro, D., Ganoth, D., Dorrello, N. V., Hershko, A., Pagano, M., & Draetta, G. F. (2003). Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature, 426, 87–91.

    Article  PubMed  CAS  Google Scholar 

  86. Falck, J., Petrini, J. H., Williams, B. R., Lukas, J., & Bartek, J. (2002). The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nature Genetics, 30, 290–294.

    Article  PubMed  Google Scholar 

  87. Syljuasen, R. G., Sorensen, C. S., Hansen, L. T., Fugger, K., Lundin, C., Johansson, F., Helleday, T., Sehested, M., Lukas, J., & Bartek, J. (2005). Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Molecular Cell Biology, 25, 3553–3562.

    Article  CAS  Google Scholar 

  88. Heffernan, T.P., Unsal-Kacmaz, K., Heinloth, A.N., Simpson, D.A., Paules, R.S., Sancar, A., Cordeiro-Stone, M. and Kaufmann, W.K. (2007). Cdc7/Dbf4 and the human S checkpoint response to UVC. Journal of Biological Chemistry.

  89. West, S. C. (2003). Molecular views of recombination proteins and their control. Nature reviews. Molecular cell biology, 4, 435–445.

    Article  PubMed  CAS  Google Scholar 

  90. Kim, J. M., Yamada, M., & Masai, H. (2003). Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development. Mutation Research, 532, 29–40.

    PubMed  CAS  Google Scholar 

  91. Bousset, K., & Diffley, J. F. (1998). The Cdc7 protein kinase is required for origin firing during S phase. Genes Development, 12, 480–490.

    PubMed  CAS  Google Scholar 

  92. Sclafani, R. A. (2000). Cdc7p-Dbf4p becomes famous in the cell cycle. J of Cell Science, 113(Pt 12), 2111–2117.

    CAS  Google Scholar 

  93. Snaith, H. A., Brown, G. W., & Forsburg, S. L. (2000). Schizosaccharomyces pombe Hsk1p is a potential cds1p target required for genome integrity. Molecular Cell Biology, 20, 7922–7932.

    Article  CAS  Google Scholar 

  94. Brown, G. W., & Kelly, T. J. (1999). Cell cycle regulation of Dfp1, an activator of the Hsk1 protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 96, 8443–8448.

    Article  PubMed  CAS  Google Scholar 

  95. Takeda, T., Ogino, K., Matsui, E., Cho, M. K., Kumagai, H., Miyake, T., Arai, K., & Masai, H. (1999). A fission yeast gene, him1(+)/dfp1(+), encoding a regulatory subunit for Hsk1 kinase, plays essential roles in S-phase initiation as well as in S-phase checkpoint control and recovery from DNA damage. Molecular Cell Biology, 19, 5535–5547.

    CAS  Google Scholar 

  96. Weinreich, M., & Stillman, B. (1999). Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. The EMBO journal, 18, 5334–5346.

    Article  PubMed  CAS  Google Scholar 

  97. Pasero, P., Duncker, B. P., Schwob, E., & Gasser, S. M. (1999). A role for the Cdc7 kinase regulatory subunit Dbf4p in the formation of initiation-competent origins of replication. Genes Development, 13, 2159–2176.

    PubMed  CAS  Google Scholar 

  98. Costanzo, V., Shechter, D., Lupardus, P. J., Cimprich, K. A., Gottesman, M., & Gautier, J. (2003). An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Molecular Cell, 11, 203–213.

    Article  PubMed  CAS  Google Scholar 

  99. Tenca, P., Brotherton, D., Montagnoli, A., Rainoldi, S., Albanese, C., & Santocanale, C. (2007). Cdc7 is an active kinase in human cancer cells undergoing replication stress. Journal of Biological Chemistry, 282, 208–215.

    Article  PubMed  CAS  Google Scholar 

  100. Takahashi, T. S., & Walter, J. C. (2005). Cdc7-Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication. Genes Development, 19, 2295–2300.

    Article  PubMed  CAS  Google Scholar 

  101. Petersen, P., Chou, D. M., You, Z., Hunter, T., Walter, J. C., & Walter, G. (2006). Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2- and Cdc7-independent DNA damage checkpoint. Molecular Cell Biology, 26, 1997–2011.

    Article  CAS  Google Scholar 

  102. Yanow, S. K., Gold, D. A., Yoo, H. Y., & Dunphy, W. G. (2003). Xenopus Drf1, a regulator of Cdc7, displays checkpoint-dependent accumulation on chromatin during an S-phase arrest. Journal of Biological Chemistry, 278, 41083–41092.

    Article  PubMed  CAS  Google Scholar 

  103. Yoshizawa-Sugata, N., Ishii, A., Taniyama, C., Matsui, E., Arai, K., & Masai, H. (2005). A second human Dbf4/ASK-related protein, Drf1/ASKL1, is required for efficient progression of S and M phases. Journal of Biological Chemistry, 280, 13062–13070.

    Article  PubMed  CAS  Google Scholar 

  104. Miao, H., Seiler, J. A., & Burhans, W. C. (2003). Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiation-induced checkpoints. Journal of Biological Chemistry, 278, 4295–4304.

    Article  PubMed  CAS  Google Scholar 

  105. Zachos, G., Rainey, M. D., & Gillespie, D. A. (2003). Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. The EMBO Journal, 22, 713–723.

    Article  PubMed  CAS  Google Scholar 

  106. Cortez, D., Glick, G., & Elledge, S. J. (2004). Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proceedings of the National Academy of Sciences of the United States of America, 101, 10078–10083.

    Article  PubMed  CAS  Google Scholar 

  107. Hu, J., McCall, C. M., Ohta, T., & Xiong, Y. (2004). Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nature Cell Biology, 6, 1003–1009.

    Article  PubMed  CAS  Google Scholar 

  108. Bi, X., Barkley, L. R., Slater, D. M., Tateishi, S., Yamaizumi, M., Ohmori, H., & Vaziri, C. (2006). Rad18 Regulates DNA Polymerase {kappa} and Is Required for Recovery from S-Phase Checkpoint-Mediated Arrest. Molecular and Cellular Biology, 26, 3527–3540.

    Article  PubMed  CAS  Google Scholar 

  109. Bi, X., Slater, D. M., Ohmori, H., & Vaziri, C. (2005). DNA polymerase kappa is specifically required for recovery from the benzo[a]pyrene-dihydrodiol epoxide (BPDE)-induced S-phase checkpoint. Journal of Biological Chemistry, 280, 22343–22355.

    Article  PubMed  CAS  Google Scholar 

  110. Bomgarden, R. D., Lupardus, P. J., Soni, D. V., Yee, M. C., Ford, J. M., & Cimprich, K. A. (2006). Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. The EMBO journal, 25, 2605–2614.

    Article  PubMed  CAS  Google Scholar 

  111. Prakash, S., Johnson, R. E., & Prakash, L. (2005). Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function. Annual Review Of Biochemistry, 74, 317–353.

    Article  PubMed  CAS  Google Scholar 

  112. Masutani, C., Araki, M., Yamada, A., Kusumoto, R., Nogimori, T., Maekawa, T., Iwai, S., & Hanaoka, F. (1999). Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. The EMBO Journal, 18, 3491–3501.

    Article  PubMed  CAS  Google Scholar 

  113. Ohmori, H., Ohashi, E., & Ogi, T. (2004). Mammalian Pol kappa: Regulation of its expression and lesion substrates. Advances in Protein Chemistry, 69, 265–278.

    Article  PubMed  CAS  Google Scholar 

  114. Chiapperino, D., Kroth, H., Kramarczuk, I. H., Sayer, J. M., Masutani, C., Hanaoka, F., Jerina, D. M., & Cheh, A. M. (2002). Preferential misincorporation of purine nucleotides by human DNA polymerase eta opposite benzo[a]pyrene 7,8-diol 9,10-epoxide deoxyguanosine adducts. The Journal of Biological Chemistry, 277, 11765–11771.

    Article  PubMed  CAS  Google Scholar 

  115. Masutani, C., Kusumoto, R., Yamada, A., Dohmae, N., Yokoi, M., Yuasa, M., Araki, M., Iwai, S., Takio, K., & Hanaoka, F. (1999). The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature, 399, 700–704.

    Article  PubMed  CAS  Google Scholar 

  116. Johnson, R. E., Kondratick, C. M., Prakash, S., & Prakash, L. (1999). hRAD30 mutations in the variant form of xeroderma pigmentosum. Science, 285, 263–265.

    Article  PubMed  CAS  Google Scholar 

  117. Ogi, T., Shinkai, Y., Tanaka, K., & Ohmori, H. (2002). Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proceedings of the National Academy of Sciences of the United States of America, 99, 15548–15553.

    Article  PubMed  CAS  Google Scholar 

  118. Avkin, S., Goldsmith, M., Velasco-Miguel, S., Geacintov, N., Friedberg, E. C., & Livneh, Z. (2004). Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: The role of DNA polymerase kappa. J Biological Chemistry, 279, 53298–53305.

    Article  CAS  Google Scholar 

  119. Cleaver, J. E., Laposa, R. R., & Limoli, C. L. (2003). DNA replication in the face of (In)surmountable odds. Cell Cycle, 2, 310–315.

    PubMed  CAS  Google Scholar 

  120. Limoli, C. L., Laposa, R., & Cleaver, J. E. (2002). DNA replication arrest in XP variant cells after UV exposure is diverted into an Mre11-dependent recombination pathway by the kinase inhibitor wortmannin. Mutation Research, 510, 121–129.

    PubMed  CAS  Google Scholar 

  121. Lopes, M., Foiani, M., & Sogo, J. M. (2006). Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Molecular Cell, 21, 15–27.

    Article  PubMed  CAS  Google Scholar 

  122. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G., & Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature, 419, 135–141.

    Article  PubMed  CAS  Google Scholar 

  123. Stelter, P., & Ulrich, H. D. (2003). Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature, 425, 188–191.

    Article  PubMed  CAS  Google Scholar 

  124. Kannouche, P. L., Wing, J., & Lehmann, A. R. (2004). Interaction of human DNA polymerase eta with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in response to DNA damage. Molecular Cell, 14, 491–500.

    Article  PubMed  CAS  Google Scholar 

  125. Watanabe, K., Tateishi, S., Kawasuji, M., Tsurimoto, T., Inoue, H., & Yamaizumi, M. (2004). Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. The EMBO Journal, 23, 3886–3896.

    Article  PubMed  CAS  Google Scholar 

  126. Haracska, L., Johnson, R. E., Unk, I., Phillips, B., Hurwitz, J., Prakash, L., & Prakash, S. (2001). Physical and functional interactions of human DNA polymerase eta with PCNA. Molecular cell Biology, 21, 7199–7206.

    Article  CAS  Google Scholar 

  127. Haracska, L., Johnson, R. E., Unk, I., Phillips, B. B., Hurwitz, J., Prakash, L., & Prakash, S. (2001). Targeting of human DNA polymerase iota to the replication machinery via interaction with PCNA. Proceedings of the National Academy of Sciences of the United States of America, 98, 14256–14261.

    Article  PubMed  CAS  Google Scholar 

  128. Haracska, L., Unk, I., Johnson, R. E., Phillips, B. B., Hurwitz, J., Prakash, L., & Prakash, S. (2002). Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA. Molecular and Cellular Biology, 22, 784–791.

    Article  PubMed  CAS  Google Scholar 

  129. Haracska, L., Acharya, N., Unk, I., Johnson, R. E., Hurwitz, J., Prakash, L., & Prakash, S. (2005). A single domain in human DNA polymerase iota mediates interaction with PCNA: Implications for translesion DNA synthesis. Molecular and Cellular Biology, 25, 1183–1190.

    Article  PubMed  CAS  Google Scholar 

  130. Vidal, A. E., Kannouche, P., Podust, V. N., Yang, W., Lehmann, A. R., & Woodgate, R. (2004). Proliferating cell nuclear antigen-dependent coordination of the biological functions of human DNA polymerase iota. The Journal of biological chemistry, 279, 48360–48368.

    Article  PubMed  CAS  Google Scholar 

  131. Parker, J. L., Bielen, A. B., Dikic, I., & Ulrich, H. D. (2007). Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase eta in Saccharomyces cerevisiae. Nucleic Acids Research, 35, 881–889.

    Article  PubMed  CAS  Google Scholar 

  132. Guo, C., Sonoda, E., Tang, T. S., Parker, J. L., Bielen, A. B., Takeda, S., Ulrich, H. D., & Friedberg, E. C. (2006). REV1 protein interacts with PCNA: Significance of the REV1 BRCT domain in vitro and in vivo. Molecular Cell, 23, 265–271.

    Article  PubMed  CAS  Google Scholar 

  133. Bienko, M., Green, C. M., Crosetto, N., Rudolf, F., Zapart, G., Coull, B., Kannouche, P., Wider, G., Peter, M., & Lehmann, A. R. et al. (2005). Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science, 310, 1821–1824.

    Article  PubMed  CAS  Google Scholar 

  134. Plosky, B. S., Vidal, A. E., Fernandez de Henestrosa, A. R., McLenigan, M. P., McDonald, J. P., Mead, S., & Woodgate, R. (2006). Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. The EMBO journal, 25, 2847–2855.

    Article  PubMed  CAS  Google Scholar 

  135. Guo, C., Tang, T. S., Bienko, M., Parker, J. L., Bielen, A. B., Sonoda, E., Takeda, S., Ulrich, H. D., Dikic, I., & Friedberg, E. C. (2006). Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Molecular Cell Biology, 26, 8892–8900.

    Article  CAS  Google Scholar 

  136. Haracska, L., Torres-Ramos, C. A., Johnson, R. E., Prakash, S., & Prakash, L. (2004). Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Molecular Cell Biology, 24, 4267–4274.

    Article  CAS  Google Scholar 

  137. Haracska, L., Unk, I., Prakash, L., & Prakash, S. (2006). Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 6477–6482.

    Article  PubMed  CAS  Google Scholar 

  138. Yuasa, M. S., Masutani, C., Hirano, A., Cohn, M. A., Yamaizumi, M., Nakatani, Y., & Hanaoka, F. (2006). A human DNA polymerase eta complex containing Rad18, Rad6 and Rev1; proteomic analysis and targeting of the complex to the chromatin-bound fraction of cells undergoing replication fork arrest. Genes Cells, 11, 731–744.

    Article  PubMed  CAS  Google Scholar 

  139. Nakajima, S., Lan, L., Kanno, S., Usami, N., Kobayashi, K., Mori, M., Shiomi, T., & Yasui, A. (2006). Replication-dependent and -independent responses of RAD18 to DNA damage in human cells. The Journal of Biological Chemistry, 281, 34687–34695.

    Article  PubMed  CAS  Google Scholar 

  140. Aravind, L., & Koonin, E. V. (2000). SAP - a putative DNA-binding motif involved in chromosomal organization. Trends in Biochemical Sciences, 25, 112–114.

    Article  PubMed  CAS  Google Scholar 

  141. Simpson, L. J., Ross, A. L., Szuts, D., Alviani, C. A., Oestergaard, V. H., Patel, K. J., & Sale, J. E. (2006). RAD18-independent ubiquitination of proliferating-cell nuclear antigen in the avian cell line DT40. EMBO Reports, 7, 927–932.

    Article  PubMed  CAS  Google Scholar 

  142. Nijman, S. M., Huang, T. T., Dirac, A. M., Brummelkamp, T. R., Kerkhoven, R. M., D’Andrea, A. D., & Bernards, R. (2005). The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Molecular Cell, 17, 331–339.

    Article  PubMed  CAS  Google Scholar 

  143. Frampton, J., Irmisch, A., Green, C. M., Neiss, A., Trickey, M., Ulrich, H. D., Furuya, K., Watts, F. Z., Carr, A. M., & Lehmann, A. R. (2006). Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Molecular Biology of the Cell, 17, 2976–2985.

    Article  PubMed  CAS  Google Scholar 

  144. Chang, D. J., Lupardus, P. J., & Cimprich, K. A. (2006). Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activities. Journal Biological Chemistry, 281, 32081–32088.

    Article  CAS  Google Scholar 

  145. Kai, M., & Wang, T. S. (2003). Checkpoint activation regulates mutagenic translesion synthesis. Genes Development, 17, 64–76.

    Article  PubMed  CAS  Google Scholar 

  146. Sabbioneda, S., Minesinger, B. K., Giannattasio, M., Plevani, P., Muzi-Falconi, M., & Jinks-Robertson, S. (2005). The 9–1–1 checkpoint clamp physically interacts with polzeta and is partially required for spontaneous polzeta-dependent mutagenesis in Saccharomyces cerevisiae. Journal Biological Chemistry, 280, 38657–38665.

    Article  CAS  Google Scholar 

  147. Hirano, Y., & Sugimoto, K. (2006). ATR homolog Mec1 controls association of DNA polymerase zeta-Rev1 complex with regions near a double-strand break. Current Biology, 16, 586–590.

    Article  PubMed  CAS  Google Scholar 

  148. Bergoglio, V., Bavoux, C., Verbiest, V., Hoffmann, J. S., & Cazaux, C. (2002). Localisation of human DNA polymerase kappa to replication foci. Journal of Cell Science, 115, 4413–4418.

    Article  PubMed  CAS  Google Scholar 

  149. Ohashi, E., Murakumo, Y., Kanjo, N., Akagi, J., Masutani, C., Hanaoka, F., & Ohmori, H. (2004). Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells, 9, 523–531.

    Article  PubMed  CAS  Google Scholar 

  150. Tissier, A., Kannouche, P., Reck, M. P., Lehmann, A. R., Fuchs, R. P., & Cordonnier, A. (2004). Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REVl protein. DNA Repair (Amst), 3, 1503–1514.

    Article  CAS  Google Scholar 

  151. Guo, C., Fischhaber, P. L., Luk-Paszyc, M. J., Masuda, Y., Zhou, J., Kamiya, K., Kisker, C., & Friedberg, E. C. (2003). Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. The EMBO journal, 22, 6621–6630.

    Article  PubMed  CAS  Google Scholar 

  152. Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S., & Prakash, L. (2000). Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature, 406, 1015–1019.

    Article  PubMed  CAS  Google Scholar 

  153. Masutani, C., Kusumoto, R., Iwai, S., & Hanaoka, F. (2000). Mechanisms of accurate translesion synthesis by human DNA polymerase eta. The EMBO Journal, 19, 3100–3109.

    Article  PubMed  CAS  Google Scholar 

  154. Zhang, H., & Lawrence, C. W. (2005). The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proceedings of the National Academy of Sciences of the United States of America, 102, 15954–15959.

    Article  PubMed  CAS  Google Scholar 

  155. Wood, R. D., Mitchell, M., Sgouros, J., & Lindahl, T. (2001). Human DNA repair genes. Science, 291, 1284–1289.

    Article  PubMed  CAS  Google Scholar 

  156. Chiu, R. K., Brun, J., Ramaekers, C., Theys, J., Weng, L., Lambin, P., Gray, D. A., & Wouters, B. G. (2006). Lysine 63-polyubiquitination guards against translesion synthesis-induced mutations. PLoS Genetics, 2, e116.

    Article  PubMed  CAS  Google Scholar 

  157. Motegi, A., Sood, R., Moinova, H., Markowitz, S. D., Liu, P. P., & Myung, K. (2006). Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. Journal of Cell Biology, 175, 703–708.

    Article  PubMed  CAS  Google Scholar 

  158. Unk, I., Hajdu, I., Fatyol, K., Szakal, B., Blastyak, A., Bermudez, V., Hurwitz, J., Prakash, L., Prakash, S., & Haracska, L. (2006). Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proceedings of the National Academy of Sciences of the United States of America, 103, 18107–18112.

    Article  PubMed  CAS  Google Scholar 

  159. Wang, X., Guan, J., Hu, B., Weiss, R. S., Iliakis, G., & Wang, Y. (2004). Involvement of Hus1 in the chain elongation step of DNA replication after exposure to camptothecin or ionizing radiation. Nucleic Acids Research, 32, 767–775.

    Article  PubMed  CAS  Google Scholar 

  160. Zhou, B. B., & Sausville, E. A. (2003). Drug discovery targeting Chk1 and Chk2 kinases. Progress in Cell Cycle Research, 5, 413–421.

    PubMed  Google Scholar 

  161. Zhou, B. B., & Bartek, J. (2004). Targeting the checkpoint kinases: Chemosensitization versus chemoprotection. Nature Reviews Cancer, 4, 216–225.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Cited work from the authors’ laboratories was supported by NIH grant ES09558 to C.V. and by grants (17013041 and 16370077) from the Japanese Ministry of Education, Culture, Sports, Science and Technology to H.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus Vaziri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkley, L.R., Ohmori, H. & Vaziri, C. Integrating S-phase checkpoint signaling with trans-lesion synthesis of bulky DNA adducts. Cell Biochem Biophys 47, 392–408 (2007). https://doi.org/10.1007/s12013-007-0032-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0032-7

Keywords

Navigation