Skip to main content
Log in

The strongly peraluminous, garnet-bearing norite–quartz jotunite–charnockite suite: products of crystal accumulation in the felsic magma reservoir

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Fractionation of felsic magma has been critical for the formation of high-silica rhyolites, chemical differentiation of the continental crust, and enrichment of economically valuable ores. Intermediate-to-intermediate–felsic cumulate rocks have recently received considerable attention, because they contain much information on the fractionation process of felsic parental magma. Nevertheless, the petrogenesis of strongly peraluminous, mafic cumulate rocks associated with felsic rocks remains controversial due to poor outcropping. Here, an early Paleozoic garnet-bearing norite–quartz jotunite–charnockite suite (NJC suite) is identified in the Yunkai terrane, South China Block. All rock types have peraluminous mineral assemblages consisting of garnet, orthopyroxene, biotite, plagioclase, K-feldspar, quartz, and accessory minerals (ilmenite, zircon, and monazite/apatite). These minerals have different volume fractions in various rock types but share comparable geochemical compositions, which result in linear correlations on major- and trace-element diagrams. Similar and crust-derived whole-rock Sr–Nd–Hf [(87Sr/86Sr)i = 0.71778–0.72389, εNd(t) = − 7.4 to − 9.3, εHf(t) = − 7.5 to − 8.5], and zircon Hf–O [εHf(t) = − 5.0 to − 13.4, δ18O = 7.85–10.09‰] isotope compositions and the presence of inherited zircons suggest a metasedimentary source for this suite. Detailed mineralogical studies of garnet, orthopyroxene, plagioclase, ilmenite, and zircon suggest a possible magmatic origin for these minerals, although the peritectic origin cannot be excluded. The compositional variation in various rock types is likely induced by crystal accumulation instead of selective restite entrainment. The cumulate origin of the NJC suite is further supported by the following features: (1) the garnet-bearing norites, quartz jotunites, and charnockites show cumulate-related microtextures defined by plagioclase, orthopyroxene, and garnet aggregation; (2) crystal size distributions (CSDs) of plagioclase and orthopyroxene in these rocks exhibit upward-deflected patterns caused by crystal accumulation; (3) the compositional disequilibrium of Mg# between orthopyroxene and whole rocks suggests that orthopyroxenes were in equilibrium with cumulates characterized by orthopyroxene accumulation; (4) temperatures recorded by ferromagnesian minerals (garnet–orthopyroxene, garnet–biotite, and orthopyroxene–biotite Fe–Mg thermometers) that are higher than the solidus temperature yielded by a two-feldspar thermometer suggests melt extraction for the Yunlu charnockite; (5) the whole-rock compositions of the NJC suite deviate from metasediment-sourced experimental melts; and (6) magmatic orthopyroxene preservation in charnockites suggests that the magma experienced melt loss and crystal accumulation before solidification. Mass balance calculations and rhyolite-MELTS modeling show that the norite, quartz jotunite, and charnockite cumulates could have formed by hindered settling coupled with gravitational compaction at crystallinities of ~ 0.2–0.25, ~ 0.30–0.35, and ≥ 0.5 respectively, from a felsic parental magma. Incomplete crystal-melt separation (controlled by different settling velocities) combined with successive crystal accumulation is responsible for the formation of cumulate rocks with various mineral proportions and comparable mineral compositions in different rock types. This study proposes a novel petrogenetic model for norites, i.e., norites could have formed by crystal accumulation of crust-derived felsic magmas without the involvement of mantle-derived mafic magma. In contrast to the mafic highly peraluminous granitoids generated by selected restite entrainment, the Yunlu NJC suite exhibits distinctive compositional characteristics governed by crystal accumulation. In this case, the crystal accumulation role must be considered for constraining the petrogenesis of the high-maficity strongly peraluminous granitoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Miner Petrol 157(4):541–558

    Article  Google Scholar 

  • Anderson AT (1984) Probable relations between plagioclase zoning and magma dynamics, Fuego Volcano. Guatemala American Mineralogist 69(7–8):660–676

    Google Scholar 

  • Andersen T (2002) Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol 192(1–2):59–79

    Article  Google Scholar 

  • Acosta-Vigil A, Rubatto D, Bartoli O, Cesare B, Meli S, Pedrera A, Tajčmanová L (2014) Age of anatexis in the crustal footwall of the Ronda peridotites, S Spain. Lithos 210:147–167

    Article  Google Scholar 

  • Barnes CG, Coint N, Yoshinobu A (2016) Crystal accumulation in a tilted arc batholith. Am Miner 101(8):1719–1734

    Article  Google Scholar 

  • Barnes CG, Werts K, Memeti V, Ardill K (2019) Most granitoid rocks are cumulates: deductions from hornblende compositions and zircon saturation. J Petrol 60(11):2227–2240

    Article  Google Scholar 

  • Barbey P, Gasquet D, Pin C, Bourgeix AL (2008) Igneous banding, schlieren and mafic enclaves in calc-alkaline granites: the Budduso pluton (Sardinia). Lithos 104(1–4):147–163

    Article  Google Scholar 

  • Bachmann O, Bergantz G (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582

    Article  Google Scholar 

  • Bachmann O, Huber C (2016) Silicic magma reservoirs in the Earth’s crust. Am Miner 101(11):2377–2404

    Article  Google Scholar 

  • Bachmann O, Huber C (2019) The inner workings of crustal distillation columns; the physical mechanisms and rates controlling phase separation in silicic magma reservoirs. J Petrol 60(1):3–18

    Article  Google Scholar 

  • Beard JS, Fedele L, Bodnar RJ (2017) A quartz-bearing norite formed by the Bowen reaction at a diorite-pelite contact. Geology 45(10):883–886

    Article  Google Scholar 

  • Best MG (2003) Igneous and metamorphic petrology. John Wiley & Sons

    Google Scholar 

  • Black LP, Gulson BL (1978) The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR J Aust Geol Geophys 3:227–232

    Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273(1–2):48–57

    Article  Google Scholar 

  • Bowen NL (1915) Crystallization-differentiation in silicate liquids. Am J Sci Fourth Ser 39:175–191

    Google Scholar 

  • Bowen NL (1919) Crystallization-differentiation in igneous Magmas. J Geol 27(6):393–430

    Article  Google Scholar 

  • Brown M (2013) Granite: from genesis to emplacement. GSA Bull 125(7–8):1079–1113

    Article  Google Scholar 

  • Carvalho BB, Sawyer EW, Janasi VDA (2017) Enhancing maficity of granitic magma during anatexis: entrainment of infertile mafic lithologies. J Petrol 58(7):1333–1362

    Article  Google Scholar 

  • Castro A, Douce AEP, Corretgé LG, Jesus DDLR, El-Biad M, El-Hmidi H (1999) Origin of peraluminous granites and granodiorites, Iberian Massif, Spain: an experimental test of granite petrogenesis. Contrib Miner Petrol 135(2):255–276

    Article  Google Scholar 

  • Cawthorn RG (2015) The Bushveld Complex, South Africa. In: Layered intrusions. Springer, Dordrecht, pp 517–587

    Book  Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138

    Article  Google Scholar 

  • Chappell BW, Wyborn D (2004) Cumulate and cumulative granites and associated rocks. Resour Geol 54(3):227–240

    Article  Google Scholar 

  • Charvet J, Shu L, Faure M, Choulet F, Wang B, Lu HL, Breton N (2010) Structural development of the Lower Paleozoic belt of South China: genesis of an intracontinental orogen. J Asian Earth Sci 39(4):309–330

    Article  Google Scholar 

  • Charvet J (2013) The Neoproterozoic–early Paleozoic tectonic evolution of the South China Block: an overview. J Asian Earth Sci 74:198–209

    Article  Google Scholar 

  • Chen CH, Liu YH, Lee CY, Xiang H, Zhou HW (2012) Geochronology of granulite, charnockite, and gneiss in the poly-metamorphosed Gaozhou Complex (Yunkai massif), South China: emphasis on the in-situ EMP monazite dating. Lithos 144:109–129

    Article  Google Scholar 

  • Chen RX, Zheng YF (2017) Metamorphic zirconology of continental subduction zones. J Asian Earth Sci 145:149–176

    Article  Google Scholar 

  • Chen S, Niu Y, Wang X, Xue Q, Sun W (2021) Identifying crystal accumulation in granitoids through amphibole composition and in situ zircon O isotopes in North Qilian Orogen. J Petrol 62(12):1–18

    Article  Google Scholar 

  • Clemens JD, Wall VJ (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Can Mineral 19:111–131

    Google Scholar 

  • Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite: experimental constraints. Am Mineral 71:317–324

    Google Scholar 

  • Clemens JD (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci Rev 61(1–2):1–18

    Article  Google Scholar 

  • Clemens JD, Stevens G, Farina F (2011) The enigmatic sources of I-type granites: the peritectic connexion. Lithos 126(3–4):174–181

    Article  Google Scholar 

  • Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329

    Article  Google Scholar 

  • Clemens JD, Birch WD (2012) Assembly of a zoned volcanic magma chamber from multiple magma batches: the Cerberean Cauldron, Marysville Igneous Complex, Australia. Lithos 155:272–288

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PW, Kinny P (2003) Atlas of zircon textures. Rev Min Geochem 53(1):469–500

    Article  Google Scholar 

  • Dahlquist JA, Galindo C, Pankhurst RJ, Rapela CW, Alasino PH, Saavedra J, Fanning CM (2007) Magmatic evolution of the Peñón Rosado granite: petrogenesis of garnet-bearing granitoids. Lithos 95(3–4):177–207

    Article  Google Scholar 

  • Davis M, Koenders MA, Petford N (2007) Vibro-agitation of chambered magma. J Volcanol Geoth Res 167(1–4):24–36

    Article  Google Scholar 

  • De Mendes JC, Campos CM (2012) Norite and charnockites from the Venda Nova Pluton, SE Brazil: intensive parameters and some petrogenetic constraints. Geosci Front 3(6):789–800

    Article  Google Scholar 

  • Deer WA, Wager LR (1939) Olivines from the Skaergaard intrusion, Kangerdlugssuak, east Greenland. Am Mineral 24(1):18–25

    Google Scholar 

  • Deering CD, Bachmann O (2010) Trace element indicators of crystal accumulation in silicic igneous rocks. Earth Planet Sci Lett 297(1–2):324–331

    Article  Google Scholar 

  • Dorfler KM, Caddick MJ, Tracy RJ (2015) Thermodynamic modeling of crustal melting using xenolith analogs from the Cortlandt Complex, New York, USA. J Petrol 56(2):389–408

    Article  Google Scholar 

  • Dorais MJ, Pett TK, Tubrett M (2009) Garnetites of the Cardigan Pluton, New Hampshire: evidence for peritectic garnet entrainment and implications for source rock compositions. J Petrol 50(11):1993–2016

    Article  Google Scholar 

  • Dorais MJ, Tubrett M (2012) Detecting peritectic garnet in the peraluminous Cardigan Pluton, New Hampshire. J Petrol 53(2):299–324

    Article  Google Scholar 

  • Dorais MJ, Pencer CJ (2014) Revisiting the importance of residual source material (restite) in granite petrogenesis: The Cardigan Pluton, New Hampshire. Lithos 202:237–249

    Article  Google Scholar 

  • Ducea MN, Saleeby JB (1996) Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: evidence from xenolith thermobarometry. J Geophys Res 101(B4):8229–8244

    Article  Google Scholar 

  • Duchesne JC, Denoiseux B, Hertogen J (1987) The norite-mangerite relationships in the Bjerkreim-Sokndal layered lopolith (southwest Norway). Lithos 20(1):1–17

    Article  Google Scholar 

  • Du DH, Wang XL, Wang S, Miller CF, Xu X, Chen X, Zhang FF (2022) Deciphering cryptic multi-stage crystal-melt separation during construction of the tonglu volcanic–plutonic complex, SE China. J Petrol 63(1)

  • Eales HV, Cawthorn RG (1996) The bushveld complex. In Developments in petrology, Vol. 15. Elsevier, pp 181–229

  • Edmonds M, Cashman KV, Holness M, Jackson M (2019) Architecture and dynamics of magma reservoirs. Phil Trans R Soc A 377(2139):20180298

    Article  Google Scholar 

  • Ellis BS, Bachmann O, Wolff JA (2014) Cumulate fragments in silicic ignimbrites: the case of the Snake River Plain. Geology 42(5):431–434

    Article  Google Scholar 

  • Frost BR, Frost CD (2008) On charnockites. Gondwana Res 13(1):30–44

    Article  Google Scholar 

  • Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52(1):39–53

    Article  Google Scholar 

  • Garrido CJ, Bodinier JL, Burg JP, Zeilinger G, Hussain SS, Dawood H, Gervilla F (2006) Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (Northern Pakistan): implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol 47(10):1873–1914

    Article  Google Scholar 

  • Garcia-Arias M, Stevens G (2017) Phase equilibrium modeling of granite magma petrogenesis: A. An evaluation of the magma compositions produced by crystal entrainment in the source. Lithos 277:131–153

    Article  Google Scholar 

  • García-Arias M (2018) Decoupled Ca and Fe+ Mg content of S-type granites: an investigation on the factors that control the Ca budget of S-type granites. Lithos 318:30–46

    Article  Google Scholar 

  • Gaweda A, Szopa K (2012) The origin of magmatic layering in the High Tatra granite, Central Western Carpathians–implications for the formation of granitoid plutons. Earth Environ Sci Trans-Roy Soc Edinburgh 102(2):129

    Article  Google Scholar 

  • Glazner AF (2014) Magmatic life at low Reynolds number. Geology 42(11):935–938

    Article  Google Scholar 

  • Green TH (1992) Experimental phase equilibrium studies of garnet-bearing I-type volcanics and high-level intrusives from Northland, New Zealand. Earth Environ Sci Trans R Soc Edinb 83(1–2):429–438

    Google Scholar 

  • Griffin WL (2008) GLITTER: data reduction software for laser ablation ICP-MS. Laser Ablation ICP-MS in the Earth Sciences: Current practices and outstanding issues, 308–311

  • Harley SL (1985) Garnet-orthopyroxene bearing granulites from Enderby Land, Antarctica: metamorphic pressure temperature-time evolution of the Archaean Napier Complex. J Petrol 26(4):819–856

    Article  Google Scholar 

  • Hartung E, Caricchi L, Floess D, Wallis S, Harayama S, Kouzmanov K, Chiaradia M (2017) Evidence for residual melt extraction in the Takidani Pluton, Central Japan. J Petrol 58:763–788

    Article  Google Scholar 

  • Hartung E, Weber G, Caricchi L (2019) The role of H2O on the extraction of melt from crystallizing magmas. Earth Planet Sci Lett 508:85–96

    Article  Google Scholar 

  • He Q, Zhang SB, Zheng YF, Chen RX (2022) Peritectic minerals record partial melting of the deeply subducted continental crust in the Sulu orogen. J Metamorph Geol 40(1):87–120

    Article  Google Scholar 

  • Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press

    Book  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Miner Petrol 98(4):455–489

    Article  Google Scholar 

  • Holness MB, Clemens JD, Vernon RH (2018) How deceptive are microstructures in granitic rocks? Answers from integrated physical theory, phase equilibrium, and direct observations. Contrib Miner Petrol 173(8):1–18

    Article  Google Scholar 

  • Keller CB, Schoene B, Barboni M, Samperton KM, Husson JM (2015) Volcanic–plutonic parity and the differentiation of the continental crust. Nature 523(7560):301–307

    Article  Google Scholar 

  • Lavaure S, Sawyer EW (2011) Source of biotite in the Wuluma Pluton: replacement of ferromagnesian phases and disaggregation of enclaves and schlieren. Lithos 125(1–2):757–780

    Article  Google Scholar 

  • Larson SA, Hogmalm KJ, Meurer WP (2007) Character and significance of spectacular layering features developed in the thin, alkali-basaltic sills of the Ulvö Gabbro Complex, Sweden. Mineral Petrol 92(3–4):427

    Google Scholar 

  • Lee CTA, Cheng X, Horodyskyj U (2006) The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge, and delamination: insights from the Sierra Nevada. Calif Contrib Mineral Petrol 151(2):222–242

    Article  Google Scholar 

  • Lee CTA, Bachmann O (2014) How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet Sci Lett 393:266–274

    Article  Google Scholar 

  • Lee CTA, Morton DM, Farner MJ, Moitra P (2015) Field and model constraints on silicic melt segregation by compaction/hindered settling: the role of water and its effect on latent heat release. Am Mineral 100:1762–1777

    Article  Google Scholar 

  • Lee CTA, Morton DM (2015) High silica granites: terminal porosity and crystal settling in shallow magma chambers. Earth Planet Sci Lett 409:23–31

    Article  Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms: recommendations of the IUGS, Subcommission on the Systematics of Igneous rocks. University Press

    Book  Google Scholar 

  • Li X, Li W, Wang X, Li Q, Liu Y, Tang G (2009) Role of mantle derived magma in genesis of early Yanshanian granites in the Nanling range, South China: in situ zircon Hf-O isotopic constraints. Sci China, Ser D Earth Sci 52:1262–1278

    Article  Google Scholar 

  • Li LM, Sun M, Wang Y, Xing G, Zhao G, Lin S, Wong J (2011) U-Pb and Hf isotopic study of zircons from migmatised amphibolites in the Cathaysia Block: implications for the early Paleozoic peak tectonothermal event in Southeastern China. Gondwana Res 19(1):191–201

    Article  Google Scholar 

  • Li ZX, Li XH, Wartho JA, Clark C, Li WX, Zhang CL, Bao C (2010) Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure-temperature conditions. GSA Bull 122(5–6):772–793

    Article  Google Scholar 

  • Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257(1–2):34–43

    Article  Google Scholar 

  • Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D (2010) Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51(1–2):537–571

    Article  Google Scholar 

  • Ludwig KR (2003) User’s manual for isoplot 3.00, a geochronlogical toolkit for microsoft excel. Berkeley Geochronl Cent Spec Publ 4:25–32

    Google Scholar 

  • Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet Sci Lett 39(3):349–357

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • McBirney AR, Noyes RM (1979) Crystallization and layering of the Skaergaard intrusion. J Petrol 20(3):487–554

    Article  Google Scholar 

  • McBirney AR, Naslund HR (1990) The differentiation of the Skaergaard intrusion. Contrib Miner Petrol 104(2):235–240

    Article  Google Scholar 

  • McKenzie DAN (1984) The generation and compaction of partially molten rock. J Petrol 25(3):713–765

    Article  Google Scholar 

  • McKenzie DAN (1985) The extraction of magma from the crust and mantle. Earth Planet Sci Lett 74(1):81–91

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Article  Google Scholar 

  • Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contrib Mineral Petrol 128(2–3):176–196

    Article  Google Scholar 

  • Namur O, Charlier B, Toplis MJ, Higgins MD, Liégeois JP, Vander Auwera J (2010) Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. J Petrol 51(6):1203–1236

    Article  Google Scholar 

  • Namur O, Higgins MD, Vander Auwera J (2015) The Sept Iles Intrusive Suite, Quebec, Canada. In: Layered intrusions. Springer, Dordrecht, pp 465–515

    Google Scholar 

  • Patiño Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Miner Petrol 107(2):202–218

    Article  Google Scholar 

  • Patiño Douce AE, McCarthy TC (1998) Melting of crustal rocks during continental collision and subduction. In When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks. Springer, Dordrecht, pp 27–55

    Google Scholar 

  • Peccerillo R, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Miner Petrol 58:63–81

    Article  Google Scholar 

  • Philpotts A, Ague J (2009) Principles of igneous and metamorphic petrology. Cambridge University Press

    Book  Google Scholar 

  • Pistone M, Arzilli F, Dobson KJ, Cordonnier B, Reusser E, Ulmer P, Blundy JD (2015) Gas-driven filter pressing in magmas: insights into in-situ melt segregation from crystal mushes. Geology 43(8):699–702

    Article  Google Scholar 

  • Pons J, Barbey P, Nachit H, Burg JP (2006) Development of igneous layering during growth of pluton: the Tarcouate Laccolith (Morocco). Tectonophysics 413(3–4):271–286

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Article  Google Scholar 

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Miner 101(4):841–858

    Article  Google Scholar 

  • Pupier E, Barbey P, Toplis MJ, Bussy F (2008) Igneous layering, fractional crystallization, and growth of granitic plutons: the Dolbel Batholith in SW Niger. J Petrol 49(6):1043–1068

    Article  Google Scholar 

  • Rong W, Zhang SB, Zheng YF (2017) Back-reaction of peritectic garnet as an explanation for the origin of Mafic Enclaves in S-type Granite from the Jiuling Batholith in South China. J Petrol 58(3):569–598

    Article  Google Scholar 

  • Scaillet B, Holtz F, Pichavant M (2016) Experimental constraints on the formation of silicic magmas. Elements 12(2):109–114

    Article  Google Scholar 

  • Schaen AJ, Cottle JM, Singer BS, Keller CB, Garibaldi N, Schoene B (2017) Complementary crystal accumulation and rhyolite melt segregation in a late Miocene Andean pluton. Geology 45(9):835–838

    Article  Google Scholar 

  • Schaen AJ, Singer BS, Cottle JM, Garibaldi N, Schoene B, Satkoski AM, Fournelle J (2018) Textural and mineralogical record of low-pressure melt extraction and silicic cumulate formation in the late Miocene Risco Bayo-Huemul plutonic complex, southern Andes. J Petrol 59(10):1991–2016

    Google Scholar 

  • Schwindinger KR, Anderson AT (1989) Synneusis of kilauea iki olivines. Contrib Miner Petrol 103(2):187–198

    Article  Google Scholar 

  • Shimura T, Komatsu M, Iiyama JT (1992) Genesis of the lower crustal garnet-orthopyroxene tonalites (S-type) of the Hidaka Metamorphic Belt, northern Japan. Trans R Soc Edinburgh 83(1–2):259–268

    Google Scholar 

  • Shimura T, Owada M, Osanai Y, Komatsu M, Kagami H (2004) Variety and genesis of the pyroxene-bearing S-and I-type granitoids from the Hidaka Metamorphic Belt, Hokkaido, northern Japan. Earth Environ Sci Trans R Soc Edinb 95(1–2):161–179

    Google Scholar 

  • Shu LS, Jahn BM, Charvet J, Santosh M, Wang B, Xu XS, Jiang SY (2014) Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): evidence from stratigraphic, structural, geochemical, and geochronological investigations. Am J Sci 314(1):154–186

    Article  Google Scholar 

  • Shu L, Wang B, Cawood PA, Santosh M, Xu Z (2015) Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China. Tectonics 34(8):1600–1621

    Article  Google Scholar 

  • Sisson TW, Bacon CR (1999) Gas-driven filter pressing in magmas. Geology 27(7):613–616

    Article  Google Scholar 

  • Solgadi F, Sawyer EW (2008) Formation of igneous layering in granodiorite by gravity flow: a field, microstructure and geochemical study of the Tuolumne Intrusive Suite at Sawmill Canyon, California. J Petrol 49(11):2009–2042

    Article  Google Scholar 

  • Song ZT, Xu XS (2022) Petrogenesis of high-maficity S-type granites: insight from the early Paleozoic Jinxi granite. South China Lithos 412:106597

    Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219(3–4):311–324

    Article  Google Scholar 

  • Srivastava RK (2008) Global intracratonic boninite-norite magmatism during the neoarchean-paleoproterozoic: evidence from the Central Indian Bastar Craton. Int Geol Rev 50(1):61–74

    Article  Google Scholar 

  • Srivastava RK, Pimentel MM, Gautam GC (2016) Nd-isotope and geochemistry of an early Palaeoproterozoic high-Si high-Mg boninite–norite suite of rocks in the southern Bastar craton, central India: petrogenesis and tectonic significance. Int Geol Rev 58(13):1596–1615

    Article  Google Scholar 

  • Stevens G, Villaros A, Moyen JF (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35(1):9–12

    Article  Google Scholar 

  • Stevens G, Clemens JD, Droop GT (1997) Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths. Contrib Miner Petrol 128(4):352–370

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36(3):359–362

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Special Public 42(1):313–345

    Article  Google Scholar 

  • Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45(1–4):29–44

    Article  Google Scholar 

  • Tang L, Santosh M, Tsunogae T, Koizumi T, Hu XK, Teng XM (2017) Petrology, phase equilibria modeling and Zircon U-Pb geochronology of paleoproterozoic Mafic Granulites from the Fuping Complex. J Metamorph Geol 35:517–540

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Memoir 74:1–146

    Article  Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS et al (2005) 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150(6):561–580

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarède F (1999) Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168(1–2):79–99

    Article  Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Miner Petrol 98(3):257–276

    Article  Google Scholar 

  • Villaros A, Stevens G, Buick IS (2009) Tracking S-type granite from source to emplacement: clues from garnet in the Cape Granite Suite. Lithos 112:217–235

    Article  Google Scholar 

  • Wager LR, Brown GM, Wadsworth WJ (1960) Types of igneous cumulates. J Petrol 1(1):73–85

    Article  Google Scholar 

  • Wang J, Li ZX (2003) History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambr Res 122(1–4):141–158

    Article  Google Scholar 

  • Wang LJ, Guo JH, Yin C, Peng P, Zhang J, Spencer CJ, Qian JH (2018) High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: restite entrainment and hybridization with mafic magma. Lithos 320:435–453

    Article  Google Scholar 

  • Wang Y, Fan W, Zhao G, Ji S, Peng T (2007) Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Res 12(4):404–416

    Article  Google Scholar 

  • Wang Y, Zhang A, Fan W, Zhao G, Zhang G, Zhang Y, Li S (2011) Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos 127(1–2):239–260

    Article  Google Scholar 

  • Wang Y, Wu C, Zhang A, Fan W, Zhang Y, Zhang Y, Yin C (2012) Kwangsian and Indosinian reworking of the eastern South China Block: constraints on zircon U-Pb geochronology and metamorphism of amphibolites and granulites. Lithos 150:227–242

    Article  Google Scholar 

  • Wang Y, Fan W, Zhang G, Zhang Y (2013a) Phanerozoic tectonics of the South China Block: key observations and controversies. Gondwana Res 23(4):1273–1305

    Article  Google Scholar 

  • Wang Y, Zhang A, Fan W, Zhang Y, Zhang Y (2013b) Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: geochronological and geochemical evidence. Lithos 160:37–54

    Article  Google Scholar 

  • Wang D, Zheng J, Ma Q, Griffin WL, Zhao H, Wong J (2013c) Early Paleozoic crustal anatexis in the intraplate Wuyi-Yunkai orogen, South China. Lithos 175:124–145

    Article  Google Scholar 

  • Wei CJ, Zhu WP (2016a) Granulite facies metamorphism and petrogenesis of granite (I): metamorphic phase equilibria for HT-UHT metapelites/greywackes. Acta Petrological Sinica 32(6):1611–1624 (in Chinese with an English abstract)

    Google Scholar 

  • Wei CJ, Zhu WP (2016b) Granulite facies metamorphism and petrogenesis of granite (II): quantitative modeling of the HT-UHT phase equilibria for metapelites and the petrogenesis of S-type granite. Acta Petrological Sinica 32(6):1625–1643 (in Chinese with an English abstract)

    Google Scholar 

  • Weis D, Kieffer B, Hanano D, Nobre Silva I, Barling J, Pretorius W, Mattielli N (2007) Hf isotope compositions of US Geological Survey reference materials. Geochem Geophys Geosyst 8(6)

  • Weis D, Kieffer B, Maerschalk C, Barling J, De Jong J, Williams GA, Mahoney JB (2006) High‐precision isotopic characterization of USGS reference materials by TIMS and MC‐ICP‐MS. Geochem Geophys Geosyst 7(8)

  • Wiebe RA, Blair KD, Hawkins DP, Sabine CP (2002) Mafic injections, in situ hybridization, and crystal accumulation in the Pyramid Peak granite, California. Geol Soc Am Bull 114(7):909–920

    Article  Google Scholar 

  • Whitney JA (1988) The origin of granite: the role and source of water in the evolution of granitic magmas. Geol Soc Am Bull 100(12):1886–1897

    Article  Google Scholar 

  • Winter JD (2013) Principles of igneous and metamorphic petrology. Pearson education.

  • White AJR, Chappell BW (1977) Ultra-metamorphism and granitoid genesis. Tectonophysics 43:7–22

    Article  Google Scholar 

  • Wu Y, Zheng Y (2004) Genesis of zircon and its constraints on interpretation of U-Pb age. Chin Sci Bull 49(15):1554–1569

    Article  Google Scholar 

  • Xia Y, Xu X, Zou H, Liu L (2014) Early Paleozoic crust–mantle interaction and lithosphere delamination in South China Block: evidence from geochronology, geochemistry, and Sr–Nd–Hf isotopes of granites. Lithos 184:416–435

    Article  Google Scholar 

  • Xia QX, Zhou LG (2017) Different origins of garnet in high pressure to ultrahigh pressure metamorphic rocks. J Asian Earth Sci 145:130–148

    Article  Google Scholar 

  • Xu W, Xu X (2017) An early Paleozoic monzonorite–granite suite in the South China Block: implications for the intracontinental felsic magmatism. Mineral Petrol 111(5):709–728

    Article  Google Scholar 

  • Yu J, Zhou X, O’Reilly YS, Zhao L, Griffin WL, Wang R, Chen X (2005) Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U-Pb and Lu-Hf isotopic studies of single zircon grains. Chin Sci Bull 50(18):2080–2089

    Article  Google Scholar 

  • Yu J, Lou F, Wang L, Shen L, Zhou X, Zhang C, Huang Z (2014) The geological significance of a Paleozoic mafic granulite found in the Yiyang area of northeastern Jiangxi Province. Chin Sci Bull 59(35):3508–3516

    Article  Google Scholar 

  • Yu Y, Huang XL, Sun M, He PL (2018) Petrogenesis of granitoids and associated xenoliths in the early Paleozoic Baoxu and Enping plutons, South China: implications for the evolution of the Wuyi-Yunkai intracontinental orogen. J Asian Earth Sci 156:59–74

    Article  Google Scholar 

  • Zeck HP (1992) Restite-melt and mafic-felsic magma mixing and mingling in an S-type dacite, Cerro del Hoyazo, southeastern Spain. Earth Environ Sci Trans R Soc Edinburgh 83:139–144

    Article  Google Scholar 

  • Zhao K, Xu X, Erdmann S (2018) Thermodynamic modeling for an incrementally fractionated granite magma system: implications for the origin of igneous charnockite. Earth Planet Sci Lett 499:230–242

    Article  Google Scholar 

  • Zhang G, Guo A, Wang Y, Li S, Dong Y, Liu S, Yao A (2013) Tectonics of South China continent and its implications. Sci China Earth Sci 56(11):1804–1828

    Article  Google Scholar 

  • Zhang XS, Xu, XS, Xia Y, Zhao K (2021) Crystallization and melt extraction of a garnet-bearing charnockite from South China: Constraints from petrography, geochemistry, mineral thermometry, and rhyolite-MELTS modeling. Am Mineral 106(3):461–480

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41930214, 41430208). We thank the editor Mark Ghiorso and two anonymous reviewers, who with their constructive comments and suggestions helped to significantly improve this paper. We are also grateful to Dr. Rui-Qiang Wang and Dr. Ding-Sheng Jiang for fruitful discussion during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Sheng Xu.

Additional information

Communicated by Mark S. Ghiorso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XS., Xu, XS. & Zhao, K. The strongly peraluminous, garnet-bearing norite–quartz jotunite–charnockite suite: products of crystal accumulation in the felsic magma reservoir. Contrib Mineral Petrol 177, 91 (2022). https://doi.org/10.1007/s00410-022-01946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01946-1

Keywords

Navigation