Skip to main content

The origin of the Late Quaternary back-arc volcanic rocks from Kamchatka: evidence from the compositions of olivine and olivine-hosted melt inclusions

Abstract

A quarter of Kamchatka’s Late Quaternary (<50 ka) volcanic deposits is erupted in the back-arc along the Sredinny Range (SR). The eruptions are represented by several dozens of polygenetic volcanoes and hundreds of monogenetic volcanoes located along a SW-NE lineament in the western part of the peninsula. Previous studies explained the generation of magma by (1) fluid induced melting of the mantle due to the input of H2O from the presently subducting slab, (2) decompression-induced melting of the mantle caused by upwelling of the asthenosphere, or (3) delamination and melting of the lower crust of the SR. We present new major and trace elements in olivine and major, trace and volatile (H2O, Cl, F and S) data in quenched olivine-hosted melt inclusions (MI) from three Holocene monogenetic volcanoes that are located in the southern, central and northern volcanic zones of the SR. The reconstructed melts range from basalts to basaltic andesites of medium-K affinity and exhibit trace element signatures that are transitional between island arc magmas (IAM) and enriched mid-ocean ridge basalts (E-MORB). They have high H2O concentrations (from ~ 1.5 to 2.5 wt.%) compared to MORB with similar Nb/Y ratios, which suggests that the H2O played an essential role in their origin. The high H2O/Cl (from ~ 50 to ~ 100) and Ba/Rb (from ~ 20 to ~ 50) ratios and low Cl/K2O (from ~ 0.02 to ~ 0.04) and Cl/F (from ~ 0.2 to ~ 0.5) ratios in these melts indicate that the budget of volatile components was controlled by the breakdown of amphibole. The Fe/Mn ratios and Ni contents in olivine from the studied Holocene volcanoes suggest significant contributions of melts derived from a pyroxenitic source. We propose that the parental magmas of these volcanoes were generated by combined partial melting of a range of delaminating lower crustal lithologies with pyroxene and amphibole and the surrounding peridotites. Their melting was facilitated by the influx of H2O that was released from amphibole breakdown at high pressures. The amount of magma that was erupted along the Sredinny Range during the Late Quaternary can be produced by delamination of at least 7 vol.% of its crust. The proposed mechanism of delamination-induced melting may be involved in magma generation in other back-arc settings with a thick crust, such as back-arc regions of the Andean-type convergent margins and some active intra-oceanic back-arcs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Code availability

Not applicable.

References

  • Aggrey KE, Muenow DW, Sinton JM (1988) Volatile abundances in submarine glasses from the north Fiji and Lau back-arc basins. Geochim Cosmochim Acta 52:2501–2506

    Article  Google Scholar 

  • Almeev RR, Holtz F, Koepke J, Parat P, Botcharnikov RE (2007) The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa. Am Mineral 92:670–674

    Article  Google Scholar 

  • Alonso-Perez R, Müntener O, Ulmer P (2008) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157:541

    Article  Google Scholar 

  • Arculus RJ, Wills KJA (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol 21:743–799

    Article  Google Scholar 

  • Auer SL, Bindeman I, Wallace P, Ponomareva VV, Portnyagin M (2009) The origin of hydrous, high-δ18O voluminous volcanism: Diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contrib Mineral Petrol 157:209–230

    Article  Google Scholar 

  • Avdeiko GP, Savelyev DP, Palueva AA, Popruzhenko SV (2007) Evolution of the Kurile-Kamchatkan volcanic arcs and dynamics of the Kamchatka-Aleutian junction. In: Volcanism and Subduction: The Kamchatka Region. American Geophysical Union, pp 37–55

  • Bazanova LI, Pevzner MM (2001) Khangar: one more active volcano in Kamchatka. Dokl Earth Sci 377:307–309

    Google Scholar 

  • Bénard A, Koga KT, Shimizu N, Kendrick MA, Ionov DA, Nebel O, Arculus RJ (2017) Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka, Russia): implications for melt generation and volatile recycling processes in subduction zones. Geochim Cosmochim Acta 199:324–350

    Article  Google Scholar 

  • Bézos A, Escrig S, Langmuir CH, Michael PJ, Asimow PD (2009) Origins of chemical diversity of back-arc basin basalts: a segment-scale study of the Eastern Lau Spreading Center. J Geophys Res: Solid Earth 114:B06212

    Google Scholar 

  • Blatter DL, Sisson TW, Hankins WB (2013) Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol 166:861–886

    Article  Google Scholar 

  • Borisov AA, Shapkin AI (1990) A new empirical equation rating Fe3+/Fe2+ in magmas to their composition, oxygen fugacity, and temperature. Geochem Int 27:111–116

    Google Scholar 

  • Bucholz CE, Gaetani GA, Behn MD, Shimizu N (2013) Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet Sci Lett 374:145–155

    Article  Google Scholar 

  • Cervantes P, Wallace PJ (2003) Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31:235–238

    Article  Google Scholar 

  • Churikova T, Dorendorf F, Wörner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J Petrol 42:1567–1593

    Article  Google Scholar 

  • Churikova T, Wörner G, Mironov N, Kronz A (2007) Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc. Contrib Mineral Petrol 154:217–239

    Article  Google Scholar 

  • Class C, Goldstein SL (1997) Plume-lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth Planet Sci Lett 150:245–260

    Article  Google Scholar 

  • Danyushevsky LV (2001) The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J Volcanol Geotherm Res 110:265–280

    Article  Google Scholar 

  • Danyushevsky LV, Plechov P (2011) Petrolog3: Integrated software for modeling crystallization processes. Geochem Geophys Geosys 12

  • Danyushevsky LV, Falloon TJ, Sobolev AV, Crawford AJ, Carroll M, Price RC (1993) The H2O content of basalt glasses from Southwest Pacific back-arc basins. Earth Planet Sci Lett 117:347–362

    Article  Google Scholar 

  • Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83

    Article  Google Scholar 

  • Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24

    Article  Google Scholar 

  • Danyushevsky LV, Leslie RAJ, Crawford AJ, Durance P (2004) Melt inclusions in primitive olivine phenocrysts: the role of localized reaction processes in the origin of anomalous compositions. J Petrol 45:2531–2553

    Article  Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

    Article  Google Scholar 

  • Davydova VO, Shcherbakov VD, Plechov PY, Perepelov AB (2017) Petrology of mafic enclaves in the 2006–2012 eruptive products of Bezymianny Volcano, Kamchatka. Petrology 25:592–614

    Article  Google Scholar 

  • Davydova MY, Martynov YA, Perepelov AB (2019) Evolution of the isotopic-geochemical composition of rocks of Uksichan Volcano, Sredinnyi range, Kamchatka, and its relations to the tectonic restyling of Kamchatka in the Neogene. Petrology 27:265–290

    Article  Google Scholar 

  • de Silva SL, Kay SM (2018) Turning up the heat: high-flux magmatism in the Central Andes. Elements 14:245–250

    Article  Google Scholar 

  • Dorendorf F, Churikova T, Koloskov A, Wörner G (2000) Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): volcanic geology and geochemical evolution. J Volcanol Geotherm Res 104:131–151

    Article  Google Scholar 

  • Ducea MN, Chapman AD, Bowman E, Balica C (2020a) Arclogites and their role in continental evolution; part 2: relationship to batholiths and volcanoes, density and foundering, remelting and long-term storage in the mantle. Earth-Sci Rev:103476

  • Ducea MN, Chapman AD, Bowman E, Triantafyllou A (2020b) Arclogites and their role in continental evolution; part 1: background, locations, petrography, geochemistry, chronology and thermobarometry. Earth-Sci Rev:103375

  • Duggen S, Portnyagin M, Baker J, Ulfbeck D, Hoernle K, Garbe-Schönberg D, Grassineau N (2007) Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting. Geochim Cosmochim Acta 71:452–480

    Article  Google Scholar 

  • Elkins-Tanton LT (2005) Continental magmatism caused by lithospheric delamination. Plates, plumes, and Paradigms: Geological Society of America Special Paper 388:449–461

  • Farmer GL, Fritz DE, Glazner AF (2020) Identifying metasomatized continental lithospheric mantle involvement in Cenozoic magmatism from Ta/Th values, Southwestern North America. Geochem Geophys Geosyst 21:e2019GC008499

  • Flemetakis S, Klemme S, Stracke A, Genske F, Berndt J, Rohrbach A (2020) Constraining the presence of amphibole and mica in metasomatized mantle sources through halogen partitioning experiments. Lithos:105859

  • Flerov GB, Koloskov AV, Puzankov MY, Perepelov AB, Shcherbakov YD, Dril SI, Palesskii SV (2016) Space–time relationships between volcanic associations of different alkalinities: the Belogolovskii Massif, Sredinnyi Range, Kamchatka. Part II. Geochemistry of volcanic rocks and magma sources. J Volcanol Seismol 10:219–241

    Article  Google Scholar 

  • Ford CE, Russel DG, Craven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24:256–265

    Article  Google Scholar 

  • Fretzdorff S, Livermore RA, Devey CW, Leat PT, Stoffers P (2002) Petrogenesis of the back-arc east Scotia Ridge, South Atlantic Ocean. J Petrol 43:1435–1467

    Article  Google Scholar 

  • Frolova TI, Plechov P, Tikhomirov PL, Churakov SV (2001) Melt inclusions in minerals of Allivalites of the Kuril-Kamchatka Island Arc. Geochem Int 39:336–346

    Google Scholar 

  • Furman T, Graham D (1999) Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. In: Developments in Geotectonics, vol 24. Elsevier, pp 237–262.

  • Garcia MO, Liu NWK, Muenow DW (1979) Volatiles in submarine volcanic rocks from the Mariana island arc and through. Geochim Cosmochim Acta 43:305–312

    Article  Google Scholar 

  • Gill JB (1976) Composition and ages of Lau Basin and Ridge volcanic rocks: implications for evolution of an interarc basin and remanent arc. Geol Soc Am Bull 87:1384–1395

    Article  Google Scholar 

  • Gorbatov A, Kostoglodov V, Suárez G, Gordeev E (1997) Seismicity and structure of the Kamchatka subduction zone. J Geophys Res B: Solid Earth 102:17883–17898

    Article  Google Scholar 

  • Green DH (1973) Experimental studies on a model upper mantle composition at high pressure under water-undersaturated and water- saturated conditions. Earth Planet Sci Lett 19:37–53

    Article  Google Scholar 

  • Greene AR, DeBari SM, Kelemen PB, Blusztajn J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna Arc Section, South-Central Alaska. J Petrol 47:1051–1093

    Article  Google Scholar 

  • Gurenko AA, Belousov AB, Trumbull RB, Sobolev AV (2005) Explosive basaltic volcanism of the Chikurachki Volcano (Kurile arc, Russia): insights on pre-eruptive magmatic conditions and volatile budget revealed from phenocryst-hosted melt inclusions and groundmass glasses. J Volcanol Geotherm Res 147:203–232

    Article  Google Scholar 

  • Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52:113–146

    Article  Google Scholar 

  • Humphreys MCS, Blundy JD, Sparks RSJ (2008) Shallow-level decompression crystallisation and deep magma supply at Shiveluch Volcano. Contrib Mineral Petrol 155:45–61

    Article  Google Scholar 

  • Ivanov AV, Perepelov AB, Puzankov MY, Yasnygina TA, Malykh YM, Rasskazov SV (2004) Rift-and arc-type basaltic volcanism of the Sredinny Ridge, Kamchatka: case study of the Payalpan volcano-tectonic structure. Metallogeny of the Pacific Northwest: Tectonics, Magmatism and Metallogeny of Active Continental Margins:345–349

  • Iwasaki T, Levin V, Nikulin A, Iidaka T (2013) Constraints on the Moho in Japan and Kamchatka. Tectonophysics 609:184–201

    Article  Google Scholar 

  • Izbekov P, Eichelberger J, Ivanov BV (2004) The 1996 eruption of Karymsky volcano, Kamchatka: historical record of basaltic replenishment of an andesite reservoir. J Petrol 45:2325–2345

    Article  Google Scholar 

  • Jarosewich EJ, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4:43–47

    Article  Google Scholar 

  • Jenner GA, Cawood PA, Rautenschlein M, White WM (1987) Composition of back-arc basin volcanics, Valu Fa ridge, Lau Basin: evidence for a slab-derived component in their mantle source. J Volcanol Geotherm Res 32:209–222

    Article  Google Scholar 

  • Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res 29:285–302

    Article  Google Scholar 

  • Jull MG, Kelemen PB (2001) On the conditions for lower crustal convective instability. J Geophys Res Atmos 106:6423–6446

    Article  Google Scholar 

  • Kamenetsky VS, Zelenski M, Gurenko A, Portnyagin M, Ehrig K, Kamenetsky M, Churikova T, Feigh S (2018) Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): part II. Composition, liquidus assemblage and fractionation of the silicate melt. Chem Geol 478:112–130

    Article  Google Scholar 

  • Kamenov GD, Perfit MR, Lewis JF, Goss AR, Arévalo R, Shuster RD (2011) Ancient lithospheric source for Quaternary lavas in Hispaniola. Nat Geosci 4:554–557

    Article  Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Kelley KA, Plank T, Grove TL, Stolper EM, Newman S, Hauri E (2006) Mantle melting as a function of water content beneath back-arc basins. J Geophys Res Solid Earth 111

  • Kendrick MA, Arculus RJ, Danyushevsky LV, Kamenetsky VS, Woodhead JD, Honda M (2014) Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins. Earth Planet Sci Lett 400:165–176

    Article  Google Scholar 

  • Kendrick MA, Danyushevsky LV, Falloon TJ, Woodhead JD, Arculus RJ, Ireland T (2020) SW Pacific arc and backarc lavas and the role of slab-bend serpentinites in the global halogen cycle. Earth Planet Sci Lett 530:115921

    Article  Google Scholar 

  • Kent AJR (2008) Melt inclusions in basaltic and related volcanic rocks. In: reviews in mineralogy & geochemistry: minerals, inclusions and volcanic processes, vol 69. pp 273–331

  • Kent AJR, Peate DW, Newman S, Stolper EM, Pearce JA (2002) Chlorine in submarine glasses from the Lau Basin: seawater contamination and constraints on the composition of slab-derived fluids. Earth Planet Sci Lett 202:361–377

    Article  Google Scholar 

  • Kepezhinskas N, Kamenov GD, Foster DA, Kepezhinskas P (2020) Petrology and geochemistry of Alkaline Basalts and Gabbroic xenoliths from Utila Island (Bay Islands, Honduras): insights into back—Arc processes in the Central American Volcanic Arc. Lithos 352–353:105306

    Article  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727

    Article  Google Scholar 

  • Koloskov AV, Flerov GB, Perepelov AB, Melekestsev IV, Puzankov MY, Filosofova TM (2013) The evolutionary stages and petrology of the kekuknai volcanic massif reflecting the magmatism in the backarc zone of the kuril-kamchatka island arc system. Part II. Petrologic and mineralogical features, petrogenesis model. J Volcanol Seismol 7:145–169

    Article  Google Scholar 

  • Lambart S, Laporte D, Schiano P (2009) An experimental study of pyroxenite partial melts at 1 and 1.5 GPa: implications for the major-element composition of Mid-Ocean Ridge Basalts. Earth Planet Sci Lett 288(1–2):335–347

    Article  Google Scholar 

  • Laverov NP (2005) Modern and Holocene volcanism in Russia

  • Le Losq C, Neuville DR, Moretti R, Roux J (2012) Determination of water content in silicate glasses using Raman spectrometry: Implications for the study of explosive volcanism. Am Mineral 97:779–790

    Article  Google Scholar 

  • Levin V, Shapiro N, Park J, Ritzwoller M (2002) Seismic evidence for catastrophic slab loss beneath Kamchatka. Nature 418:763

    Article  Google Scholar 

  • Lloyd AS, Plank T, Ruprecht P, Hauri EH, Rose W (2013) Volatile loss from melt inclusions in pyroclasts of differing sizes. Contrib Mineral Petrol 165:129–153

    Article  Google Scholar 

  • Longerich HP, Jackson SE, Gunther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal Spectrom 11:899–904

    Article  Google Scholar 

  • Lustrino M (2005) How the delamination and detachment of lower crust can influence basaltic magmatism. Earth Sci Rev 72:21–38

    Article  Google Scholar 

  • Lytle ML, Kelley KA, Hauri EH, Gill JB, Papia D, Arculus RJ (2012) Tracing mantle sources and Samoan influence in the northwestern Lau back-arc basin. Geochem Geophys Geosyst 13

  • Manea VC, Manea M (2007) Thermal models beneath Kamchatka and the Pacific Plate rejuvenation from a mantle plume impact. Washington DC American Geophysical Union Geophysical Monograph Series 172:77–89

  • Martynov AY, Martynov YA, Malinovskii AI (2020) The role of the Pyroxenite mantle in the magma genesis of the oligocene basalts from the northern part of East Sikhote Alin. Russ J Pacific Geol 14:557–570

    Article  Google Scholar 

  • McConachy TF, Arculus RJ, Yeats CJ, Binns RA, Barriga FJ, McInnes BI, Sestak S, Sharpe R, Rakau B, Tevi T (2005) New hydrothermal activity and alkalic volcanism in the backarc Coriolis Troughs. Vanuatu Geol 33(1):61–64

    Article  Google Scholar 

  • Melekhova E, Schlaphorst D, Blundy J, Kendall JM, Connolly C, McCarthy A, Arculus R (2019) Lateral variation in crustal structure along the Lesser Antilles arc from petrology of crustal xenoliths and seismic receiver functions. Earth Planet Sci Lett 516:12–24

    Article  Google Scholar 

  • Mironov N, Portnyagin M, Botcharnikov R, Gurenko A, Hoernle K, Holtz F (2015) Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure. Earth Planet Sci Lett 425:1–11

    Article  Google Scholar 

  • Muenow DW, Liu NWK, Garcia MO, Saunders AD (1980) Volatiles in submarine volcanic rocks from the spreading axis of the East Scotia Sea back-arc basin. Earth Planet Sci Lett 47:272–278

    Article  Google Scholar 

  • Müntener O, Ulmer P (2018) Arc crust formation and differentiation constrained by experimental petrology. Am J Sci 318:64–89

    Article  Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Article  Google Scholar 

  • Naumov VB, Tolstykh ML, Grib EN, Leonov VL, Kononkova NN (2008) Chemical composition, volatile components, and trace elements in melts of the Karymskii volcanic center, Kamchatka, and Golovnina volcano, Kunashir Island: evidence from inclusions in minerals. Petrology 16:1–18

    Article  Google Scholar 

  • Nebel O, Arculus RJ, Sossi PA, Jenner FE, Whan THE (2013) Iron isotopic evidence for convective resurfacing of recycled arc-front mantle beneath back-arc basins. Geophys Res Lett 40:5849–5853

    Article  Google Scholar 

  • Nekrylov NA, Plechov PYu, Bychkov KA, Perepelov AB, Puzankov MYu, Shur MYu, Dirksen OV, Bazanova LI (2015) Parental melts of the last volcanic pulse in the Sedanka field, Sredinny Range, Kamchatka. Moscow Univ Geol Bull 70:233–239

    Article  Google Scholar 

  • Nekrylov N, Popov D, Plechov P, Shcherbakov V, Danyushevsky L, Dirksen OV (2018a) Garnet-pyroxenite-derived end-member magma type in Kamchatka: evidence from composition of olivine and olivine-hosted melt inclusions in Holocene rocks of Kekuknaisky volcano. Petrology 26:329–350

    Article  Google Scholar 

  • Nekrylov N, Portnyagin MV, Kamenetsky VS, Mironov NL, Churikova TG, Plechov PYu, Abersteiner A, Gorbach NV, Gordeychik BN, Krasheninnikov SP, Tobelko DP, Shur MYu, Tetroeva SA, Volynets AO, Hoernle K, Wörner G (2018b) Chromium spinel in Late Quaternary volcanic rocks from Kamchatka: implications for spatial compositional variability of subarc mantle and its oxidation state. Lithos 322:212–224

    Article  Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40

    Article  Google Scholar 

  • Nishizawa T, Nakamura H, Churikova T, Gordeychik B, Ishizuka O, Haraguchi S, Miyazaki T, Vaglarov BS, Chang Q, Hamada M, Kimura JI, Ueki K, Toyama C, Nakao A, Iwamori H (2017) Genesis of ultra-high-Ni olivine in high-Mg andesite lava triggered by seamount subduction. Sci Rep 7:11515

    Article  Google Scholar 

  • Norman MD, Pearson NJ, Sharma A, Griffin WL (1996) Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostand Newslett 20:247–261

    Article  Google Scholar 

  • Pandey A, Chalapathi Rao NV, Chakrabarti R, Pankaj P, Pandit D, Pandey R, Sahoo S (2018) Post-collisional calc-alkaline lamprophyres from the Kadiri greenstone belt: evidence for the Neoarchean convergence-related evolution of the Eastern Dharwar Craton and its schist belts. Lithos 320–321:105–117

    Article  Google Scholar 

  • Park J, Levin V, Brandon M, Lees J, Peyton V, Gordeev E, Ozerov A (2002) A dangling slab, amplified arc volcanism, mantle flow and seismic anisotropy in the Kamchatka plate. Corner. In: Plate Boundary Zones. American Geophysical Union, pp 295–324

  • Pearce JA, Stern RJ (2006) Origin of back-arc basin magmas: trace element and isotope perspectives. In: Back-arc spreading systems: geological, biological, chemical, and physical interactions. American Geophysical Union, pp 63–86

  • Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochem Geophys Geosyst 6

  • Peate DW, Kokfelt TF, Hawkesworth CJ, Van Calsteren PW, Hergt JM, Pearce JA (2001) U-series isotope data on Lau basin glasses: the role of subduction-related fluids during melt generation in back-arc basins. J Petrol 42:1449–1470

    Article  Google Scholar 

  • Perepelov AB, Puzankov MY, Ivanov AV, Filosofova TM (2006) Basanites of Mt. Khukhch: first mineralogical-geochemical data on the Neogene K-Na alkaline magmatism in western Kamchatka. Dokl Earth Sci 409:765–768

    Article  Google Scholar 

  • Pevzner MM (2004) The first geological data on the chronology of Holocene eruptive activity in the Ichinskii Volcano (Sredinnyi Ridge, Kamchatka). Dokl Earth Sci 395A:335–337

    Google Scholar 

  • Pevzner MM (2006) Holocene volcanism of northern Kamchatka: the spatiotemporal aspect. Dokl Earth Sci 409:884–887

    Article  Google Scholar 

  • Pevzner MM (2010) The northern boundary of volcanic activity of Kamchatka in Holocene. Bull KRASEC Earth Sci 15:231–258

    Google Scholar 

  • Pevzner MM, Melekestsev IV, Volynets ON, Melkii VA (2000) South Cherpuk and North Cherpuk—the largest Holocene monogenetic volcanoes on the Sredinnyi Range of Kamchatka. Volcanol Seismol 21:667–681

    Google Scholar 

  • Plechov P, Blundy J, Nekrylov N, Melekhova E, Shcherbakov V, Tikhonova MS (2015) Petrology and volatile content of magmas erupted from Tolbachik Volcano, Kamchatka, 2012–13. J Volcanol Geotherm Res 307:182–199

    Article  Google Scholar 

  • Plechova AA, Portnyagin MV, Bazanova LI (2011) The origin and evolution of the parental magmas of frontal volcanoes in Kamchatka: evidence from magmatic inclusions in olivine from Zhupanovsky volcano. Geochem Int 49:743

    Article  Google Scholar 

  • Ponomareva VV, Melekestsev IV, Braitseva OA, Churikova T, Pevzner MM, Sulerzhitsky LD (2007) Late Pleistocene‐Holocene volcanism on the Kamchatka Peninsula, Northwest Pacific Region. In: Volcanism and Subduction: the Kamchatka Region. pp 165–198

  • Portnyagin MV, Mironov NL, Matveev SV, Plechov PY (2005) Petrology of avachites, high-magnesian basalts of Avachinsky volcano, kamchatka: II. Melt inclusions in olivine. Petrology 13:322–351

    Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255:53–69

    Article  Google Scholar 

  • Portnyagin M, Almeev R, Matveev S, Holtz F (2008) Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet Sci Lett 272:541–552

    Article  Google Scholar 

  • Portnyagin MV, Naumov VB, Mironov NL, Belousov IA, Kononkova NN (2011) Composition and evolution of the melts erupted in 1996 at Karymskoe Lake, Eastern Kamchatka: evidence from inclusions in minerals. Geochem Int 49:1085

    Article  Google Scholar 

  • Portnyagin M, Duggen S, Hauff F, Mironov N, Bindeman I, Thirlwall M, Hoernle K (2015) Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: quantitative modelling of subduction-related open magmatic systems. J Volcanol Geotherm Res 307:133–155

    Article  Google Scholar 

  • Portnyagin MV, Mironov NL, Nazarova DP (2017) Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka. Petrology 25:419–432

    Article  Google Scholar 

  • Portnyagin M, Mironov N, Botcharnikov R, Gurenko A, Almeev RR, Luft C, Holtz F (2019) Dehydration of melt inclusions in olivine and implications for the origin of silica-undersaturated island-arc melts. Earth Planet Sci Lett 517:95–105

    Article  Google Scholar 

  • Rose-Koga EF, Koga KT, Devidal J-L, Shimizu N, Le Voyer M, Dalou C, Döbeli M (2020) In-situ measurements of magmatic volatile elements, F, S, and Cl, by electron microprobe, secondary ion mass spectrometry, and heavy ion elastic recoil detection analysis. Am Mineral 105:616–626

    Article  Google Scholar 

  • Salisbury MJ, Kent AJ, Jiménez N, Jicha BR (2015) Geochemistry and 40Ar/39Ar geochronology of lavas from Tunupa volcano, Bolivia: Implications for plateau volcanism in the central Andean Plateau. Lithosphere 7:95–107

    Article  Google Scholar 

  • Saunders AD, Tarney J (1984) Geochemical characteristics of basaltic volcanism within back-arc basins. In: Kokelaar BP, Howells MF (eds) Marginal Basin Geology, vol 16. Geological Society Special Publication, pp 59–76

    Google Scholar 

  • Shaw AM, Hauri EH, Behn MD, Hilton DR, Macpherson CG, Sinton JM (2012) Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nat Geosci 5:224

    Article  Google Scholar 

  • Shcherbakov VD, Nekrylov NA, Savostin GG, Popov DV, Dirksen OV (2018) The composition of melt inclusions in minerals from tephra of the soil-pyroclastic cover of Simushir Island (Central Kuril Islands). Moscow Univ Geol Bull 73:31–42

    Article  Google Scholar 

  • Shimizu K, Saal AE, Myers CE, Nagle AN, Hauri EH, Forsyth DW, Kamenetsky VS, Niu Y (2016) Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: implications for the volatile content of the Pacific upper mantle. Geochim Cosmochim Acta 176:44–80

    Article  Google Scholar 

  • Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Portnyagin MV (2010) Solubility of H2O- and CO2- bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem Geol 277:115–125

    Article  Google Scholar 

  • Sinton JM, Fryer P (1987) Mariana Trough lavas from 18°N: Implications for the origin of back arc basin basalts. J Geophys Res 92B:12782–12802

    Article  Google Scholar 

  • Sisson TW, Kelemen PB (2018) Near-solidus melts of MORB + 4 wt% H2O at 0.8–2.8 GPa applied to issues of subduction magmatism and continent formation. Contrib Mineral Petrol 173:70

    Article  Google Scholar 

  • Søager N, Portnyagin M, Hoernle K, Holm PM, Hauff F, Garbe-Schönberg D (2015) Olivine major and trace element compositions in Southern Payenia Basalts, Argentina: evidence for pyroxenite-peridotite melt mixing in a back-arc setting. J Petrol 56:1495–1518

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417

    Article  Google Scholar 

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana Trough magmas. Earth Planet Sci Lett 121:293–325

    Article  Google Scholar 

  • Straub SM, LaGatta AB, Pozzo ALMD, Langmuir CH (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem Geophys Geosys 9

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, vol 42. Geological Society Special Publication, London, pp 313–345

    Google Scholar 

  • Sun WD, Binns RA, Fan AC, Kamenetsky VS, Wysoczanski R, Wei GJ, Hu YH, Arculus RJ (2007) Chlorine in submarine volcanic glasses from the eastern Manus basin. Geochim Cosmochim Acta 71:1542–1552

    Article  Google Scholar 

  • Taran YA, Pokrovsky BG, Volynets ON (1997) Hydrogen isotopes in hornblendes and biotites from Quaternary volcanic rocks of the Kamchatka-Kurile arc. Geochem J 31:203–221

    Article  Google Scholar 

  • Tatsumi Y, Furukawa Y, Kogiso T, Yamanaka Y, Yokoyama T, Fedotov SA (1994) A third volcanic chain in Kamchatka: thermal anomaly at transform/convergence plate boundary. Geophys Res Lett 21:537–540

    Article  Google Scholar 

  • Tatsumi Y, Kogiso T, Nohda S (1995) Formation of a third volcanic chain in Kamchatka: generation of unusual subduction-related magmas. Contrib Mineral Petrol 120:117–128

    Article  Google Scholar 

  • Tobelko DP, Portnyagin MV, Krasheninnikov SP, Grib EN, Plechov PY (2019) Compositions and formation conditions of primitive magmas of the Karymsky volcanic center, Kamchatka: evidence from melt inclusions and trace-element thermobarometry. Petrology 27:243–264

    Article  Google Scholar 

  • Turner SJ, Langmuir CH, Dungan MA, Escrig S (2017) The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1. Earth Planet Sci Lett 472:216–228

    Article  Google Scholar 

  • van de Lagemaat SH, Swart ML, Vaes B, Kosters ME, Boschman LM, Burton-Johnson A, Bijl PK, Spakman W, van Hinsbergen DJ (2021) Subduction initiation in the Scotia Sea region and opening of the Drake Passage: when and why? Earth-Sci Rev 215:103551

    Article  Google Scholar 

  • van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosyst 3:1

    Google Scholar 

  • Volynets AO, Churikova TG, Worner G, Gordeychik BN, Layer P (2010) Mafic Late Miocene-Quaternary volcanic rocks in the Kamchatka back arc region: implications for subduction geometry and slab history at the Pacific-Aleutian junction. Contrib Mineral Petrol 159:659–687

    Article  Google Scholar 

  • Volynets AO, Pevzner MM, Tolstykh ML, Babansky AD (2018) Volcanism of the southern part of the Sredinny Range of Kamchatka in the Neogene-Quaternary. Russ Geol Geophys 59:1577–1591

    Article  Google Scholar 

  • Volynets AO, Pevzner MM, Lebedev VA, Kuscheva YuV, Gol’tsman YuV, Kostitsin YuA, Tolstykh ML, Babansky AD (2020) Stages of volcanic activity on the Southeastern Flank of the Sredinny Range (Kamchatka): age, geochemistry, and isotopic characteristics of volcanic rocks of the Akhtang and Kostina Mountain Massifs. Russ Geol Geophys 61:700–714

    Article  Google Scholar 

  • Wysoczanski RJ, Wright IC, Gamble JA, Hauri EH, Luhr JF, Eggins SM, Handler MR (2006) Volatile contents of Kermadec Arc-Havre Trough pillow glasses: fingerprinting slab-derived aqueous fluids in the mantle sources of arc and back-arc lavas. J Volcanol Geotherm Res 152:51–73

    Article  Google Scholar 

  • Zhou J-S, Yang Z-S, Hou Z-Q, Wang Q (2020) Amphibole-rich cumulate xenoliths in the Zhazhalong intrusive suite, Gangdese arc: implications for the role of amphibole fractionation during magma evolution. Am Mineral 105(2):262–275

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to M.M. Pevzner for providing us with samples for this study, O. Müntener for editorial handling, and A. Kent and one anonymous reviewer for constructive comments that led to significant improvements to the original manuscript.

Funding

This study was funded by the Russian Science Foundation Grant #16-17-10145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Nekrylov.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Othmar Müntener.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 236 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nekrylov, N., Popov, D.V., Plechov, P.Y. et al. The origin of the Late Quaternary back-arc volcanic rocks from Kamchatka: evidence from the compositions of olivine and olivine-hosted melt inclusions. Contrib Mineral Petrol 176, 71 (2021). https://doi.org/10.1007/s00410-021-01830-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01830-4

Keywords

  • Sredinny range
  • Kamchatka
  • Melt inclusions
  • Olivine
  • Amphibole