Skip to main content
Log in

Shallow-level decompression crystallisation and deep magma supply at Shiveluch Volcano

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Recent petrological studies indicate that some crustal magma chambers may be built up slowly by the intermittent ascent and amalgamation of small packets of magma generated in a deep-seated source region. Despite having little effect on whole-rock compositions, this process should be detectable as variable melt trace element composition, preserved as melt inclusions trapped in phenocrysts. We studied trace element and H2O contents of plagioclase- and hornblende-hosted melt inclusions from andesite lavas and pumices of Shiveluch Volcano, Kamchatka. Melt inclusions are significantly more evolved than the whole rocks, indicating that the whole rocks contain a significant proportion of recycled foreign material. H2O concentrations indicate trapping at a wide range of pressures, consistent with shallow decompression-driven crystallisation. The variation of trace element concentrations indicates up to ∼30% decompression crystallisation, which accounts for crystallisation of the groundmass and rims on phenocrysts. Trace element scatter could be explained by episodic stalling during shallow magma ascent, allowing incompatible element concentrations to increase during isobaric crystallisation. Enrichment of Li at intermediate pH2O reflects influx and condensation of metal-rich vapours. A set of “exotic melts”, identified by their anomalous incompatible trace element characteristics, indicate variable source chemistry. This is consistent with evolution of individual magma batches with small differences in trace element chemistry, and intermittent ascent of magma pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allegre CJ, Provost A, Jaupart C (1981) Oscillatory zoning: a pathological case of crystal growth. Nature 294:223–228

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:515–539

    Google Scholar 

  • Bacon CR, Lowenstern JB (2005) Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth Planet Sci Lett 233:277–293

    Article  Google Scholar 

  • Barmin A, Melnik O, Sparks RSJ (2002) Periodic behavior in lava dome eruptions. Earth Planet Sci Lett 199:173–184

    Article  Google Scholar 

  • Berlo K, Blundy J, Turner S, Cashman K, Hawkesworth C, Black S (2004) Geochemical precursors to volcanic activity at Mount St Helens, USA. Science 306:1167–1169

    Article  Google Scholar 

  • Blundy J, Cashman K (2001) Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contrib Mineral Petrol 140:631–650

    Article  Google Scholar 

  • Blundy J, Cashman K (2005) Rapid decompression-driven crystallization recorded by melt inclusions from Mount St Helens volcano. Geology 33:793–796

    Article  Google Scholar 

  • Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80

    Article  Google Scholar 

  • Bougault H, Joron JL, Treuil M (1980) The primordial chondritic nature and large-scale heterogeneities in the mantle: evidence from high and low partition coefficient elements in oceanic basalts. Phil Trans R Soc Lon A 297:203–213

    Article  Google Scholar 

  • Browne BL, Gardner JE (2002) Experimental calibration of amphibole breakdown rates in response to decompression and heating. EOS Trans AGU 83:F1464

    Google Scholar 

  • Candela PA (1986) The evolution of aqueous vapour from silicate melts: effect on oxygen fugacity. Geochim Cosmochim Acta 50:1205–1211

    Article  Google Scholar 

  • Candela P, Piccoli P (1995) Model ore-metal partitioning from melts into vapor and vapor/brine mixtures. In: Thompson JFH (ed) Granites, fluids and ore deposits. Mineral Assoc Canada 23:101–128

  • Cashman KV (1992) Groundmass crystallization of Mount St Helens dacite, 1980–1986: a tool for interpreting shallow magmatic processes. Contrib Mineral Petrol 109:431–449

    Article  Google Scholar 

  • Cashman K, Blundy J (2000) Degassing and crystallization of ascending andesite and dacite. Phil Trans R Soc Lond A 358:1487–1513

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, van Calsteren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U-Pb systematics in zircons. J Petrol 46:3–32

    Article  Google Scholar 

  • Clocchiatti R (1975) Les inclusions vitreuses des cristaux de quartz. Etude optique, termo-optique et chimique. Applications geologiques. Mem Soc Geol France 54

  • Cottrell E, Spiegelman M, Langmuir CH (2002) Consequences of diffusive reequilibration for the interpretation of melt inclusions. Geochem Geophys Geosys 3:doi:10.1029/2001GC000205

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen & Unwin Ltd., London, p 450

    Google Scholar 

  • Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319–328

    Google Scholar 

  • Dirksen O, Humphreys MCS, Pletchov P, Melnik O, Demyanchuk Y, Sparks RSJ, Mahony S (2006) The 2001–2004 dome-forming eruption of Shiveluch volcano, Kamchatka: Observation, petrological investigation and numerical modelling. J Volcanol Geotherm Res 155:201–226

    Article  Google Scholar 

  • Dungan MA, Wulff A, Thompson R (2001) Eruptive stratigraphy of the Tatara-San Pedro Complex, 36°S, Southern Volcanic Zone, Chilean Andes: Reconstruction method and implications for magma evolution at long-lived arc volcanic centers. J Petrol 42:555–625

    Article  Google Scholar 

  • Eichelberger JC, Izbekov PE, Browne BL (2006) Bulk chemical trends at arc volcanoes are not liquid lines of descent. Lithos 87:135–154

    Article  Google Scholar 

  • Frezzotti M-L (2001) Silicate melt inclusions in magmatic rocks: applications to petrology. Lithos 55:273–299

    Article  Google Scholar 

  • Gaetani GA, Watson EB (2000) Open system behavior of olivine-hosted melt inclusions. Earth Planet Sci Lett 183:27–41

    Article  Google Scholar 

  • Gaillard F, Scaillet B, Pichavant M (2002) Kinetics of iron oxidation-reduction in hydrous silicic melts. Am Min 87:829–837

    Google Scholar 

  • Geschwind C-H, Rutherford MJ (1995) Crystallization of microlites during magma ascent: the fluid mechanics of 1980–1986 eruptions at Mount St Helens. Bull Volcanol 57:356–370

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin, p 358

    Google Scholar 

  • Giletti BJ, Shanahan T (1997) Alkali diffusion in plagioclase felspar. Chem Geol 139:3–20

    Article  Google Scholar 

  • Gioncada A, Clocchiatti R, Sbrana A, Bottazzi P, Massare D, Ottolini L (1998) A study of melt inclusions at Vulcano (Aeolian Islands, Italy): insights on the primitive magmas and on the volcanic feeding system. Bull Volcanol 60:286–306

    Article  Google Scholar 

  • Gurenko AA, Trumbull RB, Thomas R, Lindsay JM (2005) A melt inclusion record of volatiles, trace elements and Li-B isotope variations in a single magma system from the Plat Pays Volcanic Complex, Dominica, Lesser Antilles. J Petrol 46:2495–2526

    Article  Google Scholar 

  • Harford CL, Sparks RSJ (2001) Recent remobilisation of shallow-level intrusions on Montserrat revealed by hydrogen isotope composition of amphiboles. Earth Planet Sci Lett 185:285–297

    Article  Google Scholar 

  • Hawkesworth C, Turner S, Peate D, McDermott F, van Calsteren P (1997) Elemental U and Th variations in island arc rocks: implications for U-series isotopes. Chem Geol 139:207–221

    Article  Google Scholar 

  • Hochstaedter AG, Kepezhinskas P, Defant M, Drummond M (1996) Insights into the volcanic arc mantle wedge from magnesian lavas from the Kamchatka arc. J Geophys Res 101(B1):697–712

    Article  Google Scholar 

  • Holtz F, Johannes W (1994) Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos 32:149–159

    Article  Google Scholar 

  • Holtz F, Sato H, Lewis J, Behrens H, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen dacite, Japan. Part I: phase relations, phase composition and pre-eruptive conditions. J Petrol 46:319–337

    Article  Google Scholar 

  • Humphreys MCS, Blundy JD, Sparks RSJ (2006a) Magma evolution and open-system processes at Shiveluch Volcano: Insights from phenocryst zoning. J Petrol 47:2303–2334

    Article  Google Scholar 

  • Humphreys MCS, Kearns S, Blundy JD (2006b) SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: implications for melt inclusion analysis. Am Mineral 91:667–679

    Article  Google Scholar 

  • Ishikawa T, Tera F, Nakazawa T (2001) Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochim Cosmochim Acta 65:4523–4537

    Article  Google Scholar 

  • Jambon A (1982) Tracer diffusion in granitic melts: experimental results for Na, K, Rb, Cs, Ca, Sr, Ba, Ce, Eu to 1300°C and a model of calculation. J Geophys Res 87:10797–10810

    Google Scholar 

  • Kent AJR, Blundy J, Cashman K, Cooper KM, Donnelly C, Pallister JS, Reagan M, Rowe MC, Thornber CR (2007) Vapor transfer prior to the October 2004 eruption of Mount St Helens, Washington. Geology 35:231–234

    Article  Google Scholar 

  • Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS, Hawkesworth CJ, Koloskov A, Maury RC, Bellon H (1997) Geochim Cosmochim Acta 61:577–600

    Article  Google Scholar 

  • Korzhinsky MA, Tkachenko SI, Shmulovich KI, Taran YA, Steinberg GS (1994) Discovery of a pure rhenium mineral at Kudriavy volcano. Nature 369:51–52

    Article  Google Scholar 

  • Leeman WP, Sisson VB (1996) Geochemistry of boron and its implications for crustal and mantle processes. Rev Mineral Geochem 33:645–707

    Google Scholar 

  • Lowenstern JB (2003) Melt inclusions come of age: volatiles, volcanoes and Sorby’s legacy. In: De Vivo B, Bodnar RJ (eds) Melt inclusions in volcanic systems: methods, applications and problems. Dev Volcanol 5:1–22

  • Martin V (2001) Petrology of andesite from Shiveluch Volcano, Kamchatka and a comparison with Soufrière Hills Volcano, Montserrat. Unpublished MSc thesis, University of Bristol, Bristol, 68pp

  • Melekestsev IV, Volynets ON, Yermakov VA, Kirsanova TP, Masurenkov YP (1991) Sheveluch volcano. In: Fedotov SA, Masurenkov YP (eds) Active volcanoes of Kamchatka. Nauka, Moscow pp 84–105

    Google Scholar 

  • Melnik O, Sparks RSJ (2005) Controls on conduit magma flow dynamics during lava dome building eruptions. J Geophys Res 110:B02209

    Article  Google Scholar 

  • Metrich N, Rutherford MJ (1992) Experimental study of chlorine behaviour in hydrous silicic melts. Geochim Cosmochim Acta 56:607–616

    Article  Google Scholar 

  • Mungall JE, Dingwell DB, Chaussidon M (1999) Chemical diffusivities of 18 trace elements in granitoid melts. Geochim Cosmochim Acta 63:2599–2610

    Article  Google Scholar 

  • Nakamura M, Shimakita S (1998) Dissolution origin and syn-entrapment compositional change of melt inclusion in plagioclase. Earth Planet Sci Lett 161:119–133

    Article  Google Scholar 

  • Naumov BV, Kovalenko VI, Babanskii AD, Tolstykh ML (1997) Genesis of andesites: evidence from studies of melt inclusions in minerals. Petrology 5:586–596

    Google Scholar 

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for Excel. Comp Geosci 28:597–604

    Article  Google Scholar 

  • Pineau F, Semet MP, Grassineau N, Okrugin VM, Javoy M (1999) The genesis of the stable isotope (O,H) record in arc magmas: the Kamtchatka’s case. Chem Geol 135:93–124

    Article  Google Scholar 

  • Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37:5115–5124

    Article  Google Scholar 

  • Qin Z, Lu F, Anderson AT (1992) Diffusive reequilibration of melt and fluid inclusions. Am Mineral 77:565–576

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev Mineral 12:644

    Google Scholar 

  • Rose EF, Shimizu N, Layne GD, Grove TL (2001) Melt production beneath Mt Shasta from Boron data in primitive melt inclusions. Science 293:281–283

    Article  Google Scholar 

  • Rowe MC, Nielsen RL, Kent AJR (2006) Anomalously high Fe contents in rehomogenized olivine-hosted melt inclusions from oxidized magmas. Am Mineral 91:82–91

    Article  Google Scholar 

  • Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St Helens eruptions. J Geophys Res 98:19667–19685

    Article  Google Scholar 

  • Sato H, Nakada S, Fujii T, Nakamura M, Suzuki-Kamata K (1999) Groundmass pargasite in the 1991–1995 dacite of Unzen volcano: phase stability experiments and volcanological implications. J Volc Geotherm Res 89:197–212

    Article  Google Scholar 

  • Schreiber HD (1983) The chemistry of uranium in glass-forming aluminosilicate melts. J Less Common Metals 91:129–147

    Article  Google Scholar 

  • Sisson TW, Layne GD (1993) H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117:619–635

    Article  Google Scholar 

  • Sparks RSJ (1997) Causes and consequences of pressurisation in lava dome eruptions. Earth Planet Sci Lett 150:177–189

    Article  Google Scholar 

  • Sparks RSJ, Pinkerton H (1978) Effect of degassing on rheology of basaltic lava. Nature 276:385–386

    Article  Google Scholar 

  • Sparks RSJ, Murphy MD, Lejeune AM, Watts RB, Barclay J, Young SR (2000) Control on the emplacement of the andesite lava dome of the Soufrière Hills Volcano, Montserrat by degassing-induced crystallisation. Terra Nova 12:14–20

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc Lon Spec Publ 42:313–345

  • Swanson SE, Naney MT, Westrich HR, Eichelberger JC, (1989) Crystallization history of Obsidian Dome, Inyo Domes, California. Bull Volcanol 51:161–176

    Article  Google Scholar 

  • Tolstykh ML, Naumov VB, Babansky AD, Khubanaya SA, Kononkova NN (2000) Chemical composition, trace elements, and volatile components of melt inclusions in minerals from andesites of the Shiveluch volcano, Kamchatka. Geochem Inter 38:S123–S132

    Google Scholar 

  • Tsuchiyama A (1985) Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites. Contrib Mineral Petrol 89:1–16

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8—SiO2—H2O. Geol Soc Am Mem 74:153

    Google Scholar 

  • Volynets ON, Ponomareva VV, Babansky AD (1997) Magnesian basalts of Shiveluch andesite volcano, Kamchatka. Petrology 5:183–196

    Google Scholar 

  • Watson EB (1976) Glass inclusions as samples of early magmatic liquid: determinative method and application to a South Atlantic basalt. J Volcanol Geotherm Res 1:73–84

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited—temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Webster JD (1997) Chloride solubility in felsic melts and the role of chloride in magmatic degassing. J Petrol 38:1793–1807

    Article  Google Scholar 

  • Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Bull Soc Econ Geol 100:1287–1312

    Article  Google Scholar 

  • Wylie JJ, Voight B, Whitehead JA (1999) Instability of magma flow from volatile-dependent viscosity. Science 285:1883–1885

    Article  Google Scholar 

  • Zhang YX (1999) H2O in rhyolitic glasses and melts: Measurements, speciation, solubility and diffusion. Rev Geophys 37:493–516

    Article  Google Scholar 

Download references

Acknowledgements

MCSH was supported by a NERC PhD studentship and JDB by a NERC Senior Research Fellowship. RSJS acknowledges the support of a Royal Society Wolfson Merit Award. We are very grateful to Richard Hinton, Simone Kasemann and John Craven (Ion Microprobe Facility, University of Edinburgh) for assistance with ion microprobe analysis, and to Stuart Kearns (University of Bristol) for assistance with EPMA. The manuscript was improved by reviews by Maxim Portnyagin and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. S. Humphreys.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2007_223_MOESM1_ESM.xls

410_2007_223_MOESM2_ESM.xls

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphreys, M.C.S., Blundy, J.D. & Sparks, R.S.J. Shallow-level decompression crystallisation and deep magma supply at Shiveluch Volcano. Contrib Mineral Petrol 155, 45–61 (2008). https://doi.org/10.1007/s00410-007-0223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0223-7

Keywords

Navigation