Skip to main content
Log in

Petrogenesis of the Gifford Creek Carbonatite Complex, Western Australia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The 1370 Ma Gifford Creek Carbonatite Complex (GCCC) comprises a diverse suite of alkaline dyke and sill complexes that cover an area of ~ 250 km2 in the Gascoyne Province, Western Australia. Most carbonatite types are interpreted to be related products of fractional crystallisation, with calcite carbonatites representing cumulate rocks and dolomite carbonatites representing crystallised products of the derivative liquids. Genetic relationships between these carbonatites and other alkaline igneous units are less clear. The ankerite–siderite carbonatites and magnetite-biotite dykes are likely of related magmatic origin as both have distinctly high LREE and low HFSE contents. The ankerite–siderite carbonatites have mantle-like δ13C isotope values of − 6.1 to − 7.1‰ and similar geochemistry to other known magmatic ferrocarbonatites. Silica-rich alkaline veins found near the centre of the complex have trace element signatures that are antithetic to the magnetite–biotite dykes, so these veins are interpreted to represent products of alkali- and F-rich magmatic-hydrothermal fluids exsolved from the magnetite–biotite dykes during their emplacement. Carbon, O, Sr, and Nd isotope data are consistent with an enriched mantle source for the origin of the GCCC, with mantle enrichment likely caused by plate convergence processes associated with the c. 2.0 Ga Glenburgh Orogeny. There is no evidence to link mantle plume activity with formation of the GCCC; rather, alkaline magmatism is interpreted to result from low degree melting of the metasomatised mantle during reactivation of the crustal suture zone at 1370 Ma. The carbonatitic magmas utilised the Lyons River Fault to traverse the crust to be emplaced as the GCCC. Post magmatic alteration has variably modified the O and Sr isotope compositions of carbonates from these rocks. We therefore appeal for careful evaluation of isotopic data from ancient carbonatites, as isotopic resetting may be more common than currently recognised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(modified after Slezak et al. 2018)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Modified from Johnson et al. (2011, 2013)

Similar content being viewed by others

References

  • Barker DS (1989) Field relations of carbonatites. In: Bell K (ed) Carbonatites: Genesis and Evolution. Unwin Hyman, London, pp 38–69

    Google Scholar 

  • Barsukova ML, Kuznetsov VA, Dorofeyva VA, Khodakovskiy LI (1979) Measurement of the solubility of rutile TiO2 in fluoride solutions at elevated temperatures. Geochem Int 7:41–49

    Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Miner Petrol 123:323–333

    Article  Google Scholar 

  • Bell K, Blenkinsop J (1987) Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 15(2):99–102

    Article  Google Scholar 

  • Bell K, Blenkinsop J, Cole TJS, Menagh DP (1982) Evidence from Sr isotopes for long-lived heterogeneities in the upper mantle. Nature 298(5871):251–253

    Article  Google Scholar 

  • Biggar GM (1969) Phase relationships in the join Ca(OH)2–CaCO3–Ca3(PO4)–H2O at 1000 bars. Miner Mag 37:75–82

    Article  Google Scholar 

  • Chakhmouradian AR, Williams CT (2004) Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the kola alkaline province. The Mineralogical Society of Great Britain and Ireland, Cambridge, pp 293–340

    Google Scholar 

  • Chakhmouradian AR, Böhm CO, Demény A, Reguir EP, Hegner E, Creaser RA, Halden NM, Yang P (2009) “Kimberlite” from Wekusko Lake, Manitoba: actually a diamond-indicator-bearing dolomite carbonatite. Lithos 112:347–357

    Article  Google Scholar 

  • Cordeiro PFO, Brod JA, Dantas EL, Barbosa ESR (2010) Mineral chemistry, isotope geochemistry and petrogenesis of niobium-rich rocks from the Catalão I carbonatite-phoscorite complex, Central Brazil. Lithos 118:223–237

    Article  Google Scholar 

  • Dawson JB, Hawthorne JB (1973) Magmatic sedimentation and carbonatitic differentiation in kimberlite sills at Benfontein, South Africa. J Geol Soc Lond 129:61–85

    Article  Google Scholar 

  • Deines P (2004) Carbon isotope effects in carbonate systems. Geochim Cosmochim Acta 68(12):2659–2679

    Article  Google Scholar 

  • Demény A, Sitnikova MA, Karchevsky PI (2004) Stable C and O isotope compositions of carbonatite complexes of the Kola Alkaline Province: phoscorite–carbonatite relationships and source compositions. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the kola alkaline province. Mineralogical Society of Great Britain & Ireland, London, pp 407–429

    Google Scholar 

  • Downes PJ, Demeny A, Czuppon G, Jaques AL, Verall M, Sweetapple M, Adams D, McNaughton NJ, Gwalani LG, Griffin BJ (2014) Stable H–C–O isotope and trace element geochemistry of the Cummins Range Carbonatite Complex, Kimberley region, Western Australia: implications for hydrothermal REE mineralization, carbonatite evolution and mantle source regions. Miner Depos 49:905–932

    Article  Google Scholar 

  • Drüppel K, Hoefs J, Hoefs JMO (2004) Fenitizing processes induced by ferrocarbonatite magmatism at Swartbooisdrif, NW Namibia. J Pet 46(2):377–406

    Article  Google Scholar 

  • Dunworth EA, Bell K (2001) The Turiy Massif, Kola Peninsula, Russia: isotopic and geochemical evidence for multi-source evolution. J Pet 42:377–405

    Article  Google Scholar 

  • Elliott HAL, Wall F, Chakhmouradian AR, Siegfried PR, Dahlgren S, Weatherley S, Finch AA, Marks MAW, Deady E (2018) Fenites associated with carbonatite complexes: a review. Ore Geol Rev 98:38–59

    Article  Google Scholar 

  • Eriksson SC (1989) Phalaborwa: a saga of magmatism, metasomatism and miscibility. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 221–254

    Google Scholar 

  • Ernst RE (2014) Large igneous provinces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gellatly DC (1975) Yangibana Creek U-Th-REE-base metal prospect, Gascoyne Goldfield. Amax Exploration (Australia) Inc, W.A

    Google Scholar 

  • Gervasoni F, Klemme S, Rohrbach A, Brutzner T, Berndt J (2017) Experimental constraints on the stability of baddeleyite and zircon in carbonate- and silicate-carbonate melts. Am Miner 102:860–866

    Article  Google Scholar 

  • Gittins J, Harmer RE (1997) What is ferrocarbonatite? A revised classification. J Afr Earth Sc 25(1):159–168

    Article  Google Scholar 

  • Harmer RE, Gittins J (1997) The origin of dolomitic carbonatites: field and experimental constraints. J Afr Earth Sc 25(1):5–28

    Article  Google Scholar 

  • Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment: isotopic evidence. Science 256:517–520

    Article  Google Scholar 

  • Huston DL, Maas R, Cross A, Hussey KJ, Mernagh TP, Fraser G, Champion DC (2016) The Nolans Bore rare-earth element-phosphorus-uranium mineral system: geology, origin and post-depositional modifications. Miner Depos 51(6):797–822

    Article  Google Scholar 

  • Jiang SY, Wang RC, Xu XS, Zhao KD (2005) Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems. Phys Chem Earth 30:1020–1029

    Article  Google Scholar 

  • Johnson SP, Sheppard S, Rasmussen B, Wingate MTD, Kirkland CL, Muhling JR, Fletcher IR, Belousova EA (2011) Two collisions, two sutures: punctuated pre-1950 Ma assembly of the West Australian Craton during the Ophthalmian and Glenburgh Orogenies. Precambr Res 189(3–4):239–262

    Article  Google Scholar 

  • Johnson SP, Thorne AM, Tyler IM, Korsch RJ, Kennett BLN, Cutten HN, Goodwin J, Blay O, Blewett RS, Joly A, Dentith MC, Aitken ARA, Holzschuh J, Salmon M, Reading A, Heinson G, Boren G, Ross J, Costelloe RD, Fomin T (2013) Crustal architecture of the Capricorn Orogen, Western Australia and associated metallogeny. Aust J Earth Sci 60(6–7):681–705

    Article  Google Scholar 

  • Keller J (1989) Extrusive carbonatites and their significance. In: Bell K (ed) Carbonatites: Genesis and Evolution. Unwyn Hyman, London, pp 70–88

    Google Scholar 

  • Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite Volcanism. Springer, Berlin, pp 113–123

    Chapter  Google Scholar 

  • Kogarko LN, Suddaby P, Watkins P (1997) Geochemical evolution of carbonatite melts in Polar Siberia. Geochem Int 35:113–118

    Google Scholar 

  • Kono Y, Kenney-Benson C, Hummer D, Ohfuji H, Park C, Shen G, Wang Y, Kavner A, Manning CE (2014) Ultralow viscosity of carbonate melts at high pressures. Nat Commun 5:5091

    Article  Google Scholar 

  • Krasnova NI, Petrov TG, Balaganskaya EG, Garcia D, Moutte J, Zaitsev AN, Wall F (2004) Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. The Mineralogical Society of Great Britain and Ireland, London, pp 45–74

    Google Scholar 

  • Le Bas MJ (1977) Carbonatite-nephelinite volcanism. Wiley, London

    Google Scholar 

  • Le Bas MJ (1989) Diversification of carbonatite. In: Bell K (ed) Carbonatites genesis and evolution. Unwin Hyman Ltd, London, pp 428–447

    Google Scholar 

  • Le Maitre RW (2002) Igneous Rocks: a classification and glossary of terms: recommendations of international union of geological sciences, subcommission on the systematics of igneous rocks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Martin DM, Thorne AM (2004) Tectonic setting and basin evolution of the Bangemall Supergroup in the northwestern Capricorn Orogen. Precambr Res 128(3):385–409

    Article  Google Scholar 

  • McDonough WF, Ss Sun (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Article  Google Scholar 

  • Mitchell RH (1979) The alleged kimberlite-carbonatite relationship: additional contrary mineralogical evidence. Am J Sci 279:570–589

    Article  Google Scholar 

  • Motoyoshi Y, Hensen BJ (2001) F-rich phlogopite stability in ultra-high-temperature metapelites from the Napier Complex, East Antarctica. Am Miner 86:1404–1413

    Article  Google Scholar 

  • Nelson DR, McCulloch MT, Sun S-S (1986) The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochim Cosmochim Acta 50(2):231–245

    Article  Google Scholar 

  • Nicholls J, Carmichael JSE (1969) Peralkaline acid liquids: a petrological study. Contrib Miner Metrol 20:268–294

    Article  Google Scholar 

  • Occhipinti SA, Sheppard S, Passchier C, Tyler IM, Nelson DR (2004) Palaeoproterozoic crustal accretion and collision in the southern Capricorn Orogen: the Glenburgh Orogeny. Precambr Res 128(3–4):237–255

    Article  Google Scholar 

  • Pearson JM (1996) Alkaline rocks of the Gifford Creek Complex, Gascoyne Province, Western Australia: their petrogenetic and tectonic significance. University of Western Australia

  • Pearson JM, Taylor WR (1996) Mineralogy and geochemistry of fenitized alkaline ultrabasic sills of the Gifford Creek Complex, Gascoyne Province, Western Australia. Can Miner 34:201–219

    Google Scholar 

  • Pearson JM, Taylor WR, Barley ME (1996) Geology of the alkaline Gifford Creek Complex, Gascoyne Complex, Western Australia. Aust J Earth Sci 43(3):299–309

    Article  Google Scholar 

  • Petersen EU, Essene EJ, Peacor DR, Valley JW (1982) Fluorine end-member micas and amphiboles. Am Miner 67:538–544

    Google Scholar 

  • Pilet S, Hernandez J, Sylvester P, Poujol M (2005) The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth Planet Sci Lett 236(1):148–166

    Article  Google Scholar 

  • Pirajno F (2015) Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Res 27:1181–1216

    Article  Google Scholar 

  • Pirajno F, González-Álvarez I (2013) The ironstone veins of the Gifford Creek ferrocarbonatite complex, Gascoyne Province: Geological Survey of Western Australia, Record 2013/12. p 19

  • Pirajno F, González-Álvarez I, Chen W, Kyser KT, Simonetti A, Leduc E, leGras M (2014) The Gifford Creek Ferrocarbonatite Complex, Gascoyne Province, Western Australia: associated fenitic alteration and a putative link with the ~ 1075 Ma Warakurna LIP. Lithos 202–203:100–119

    Article  Google Scholar 

  • Pisarevsky SA, Wingate MTD, Li Z-X, Wang X-C, Tohver E, Kirkland CL (2014) Age and paleomagnetism of the 1210 Ma Gnowangerup-Fraser dyke swarm, Western Australia, and implications for late Mesoproterozoic paleogeography. Precambr Res 246:1–15

    Article  Google Scholar 

  • Prokopyev IR, Borisenko AS, Borovikov AA, Pavlova GG (2016) Origin of REE-rich ferrocarbonatites in southern Siberia (Russia): implications based on melt and fluid inclusions. Miner Pet 110(6):845–859

    Article  Google Scholar 

  • Reguir EP, Chakhmouradian AR, Halden NM, Malkovets VG, Yang P (2009) Major- and trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. Lithos 112:372–384

    Article  Google Scholar 

  • Rubin JN, Henry CD, Price JG (1993) The mobility of zirconium and other “immobile” elements during hydrothermal alteration. Chem Geol 110:29–47

    Article  Google Scholar 

  • Russel HD, Hiemstra SA, Groenevelf D (1954) The mineralogy and petrology of the carbonatite at Loolekop, Eastern Transvaal. Trans Geol Soc S Afr 57:197–208

    Google Scholar 

  • Sallet R (2000) Fluorine as a tool in the petrogenesis of quartz-bearing magmatic associations: applications of an improved F-OH biotite–apatite thermometer grid. Lithos 50(1):241–253

    Article  Google Scholar 

  • Salvi S, Williams-Jones AE (1996) The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochim Cosmochim Acta 60:1917–1932

    Article  Google Scholar 

  • Sheppard S, Occhipinti SA, Nelson DR (2005) Intracontinental reworking in the Capricorn Orogen, Western Australia: the 1680 - 1620 Ma Mangaroon Orogeny. Aust J Earth Sci 52(3):443–460

    Article  Google Scholar 

  • Sheppard S, Bodorkos SP, Johnson SP, Wingate MTD, Kirkland CL (2010) The Paleoproterozic Capricorn Orogeny: intracontinental reworking not continent-continent collision. Geological Survey of Western Australia, Report 108, p 33

  • Simonetti A, Bell K (1994) Isotopic and geochemical investigation of the Chilwa Island Carbonatite Complex, Malawi: evidence for a depleted mantle source region, liquid immiscibility, and open system behaviour. J Petrol 35:1597–1621

    Article  Google Scholar 

  • Slezak P (2019) Petrology of the Gifford Creek Carbonatite Complex and the Yangibana LREE district, Western Australia: new insights from isotope geochemistry and geochronology. Phd Thesis, James Cook University, Townsville

  • Slezak P, Spandler C (2019) Carbonatites as recorders of mantle-derived magmatism and subsequent tectonic events: an example of the Gifford Creek Carbonatite Complex, Western Australia. Lithos 328–329:212–227

    Article  Google Scholar 

  • Slezak P, Spandler C, Blake K (2018) Ghosts of apatite past: using hyperspectral cathodoluminescence and micro-geochemical data to reveal multi-generational apatite in the Gifford Creek Carbonatite Complex, Australia. Can Mineral 56:773–797

    Article  Google Scholar 

  • Smith CB (1983) Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature 304(5921):51–54

    Article  Google Scholar 

  • Spandler C, Morris C (2016) Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y and REE) deposit, NSW, Australia, and implications for rare metal mineralization in peralkaline igneous rocks. Contrib Miner Petrol 171(12):104

    Article  Google Scholar 

  • Ss Sun, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society Special Publication, London, pp 313–345

    Google Scholar 

  • Stracke A (2012) Earth’s heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chem Geol 330–331:274–299

    Article  Google Scholar 

  • Stracke A, Hofman AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6:1–20

    Article  Google Scholar 

  • Tao R, Fei Y, Zhang L (2013) Experimental determination of siderite stability at high pressure. Am Miner 98:1565–1572

    Article  Google Scholar 

  • Taylor HP, Frechen J, Degens E (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alno District, Sweden. Geochim Cosmochim Acta 31:407–430

    Article  Google Scholar 

  • Thompson RN, Smith PM, Gibson SA, Mattey DP, Dickin AP (2002) Ankerite carbonatite from Swartbooisdrif, Namibia: the first evidence for magmatic ferrocarbonatite. Contrib Miner Petrol 143:377–395

    Article  Google Scholar 

  • Timofeev A, Migdisov AA, Williams-Jones AE (2015) An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature. Geochim Cosmochim Acta 158:103–111

    Article  Google Scholar 

  • Vartiainen H (1980) The petrography, mineralogy and petrochemistry of the Sokli carbonatite massif, northern Finland. In: Bulletin, 313. Geological Survey of Finland, p 126

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161(1):59–88

    Article  Google Scholar 

  • Veksler IV, Nielsen TFD, Sokolov SV (1998) Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J Petrol 39(11–12):2015–2031

    Article  Google Scholar 

  • Wall F, Zaitsev AN (2004) Rare earth metals in Kola carbonatites. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the kola alkaline province. The Mineralogical Society of Great Britain and Ireland, Cambridge, pp 341–373

    Google Scholar 

  • Watson EB (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contrib Miner Metrol 70:407–419

    Article  Google Scholar 

  • Woolley AR (1982) A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites. Miner Mag 46(338):13–17

    Article  Google Scholar 

  • Woolley AR, Bailey DK (2012) The crucial role of lithospheric structure in the generation and release of carbonatites: geological evidence. Miner Mag 76(2):259–270

    Article  Google Scholar 

  • Woolley AR, Buckley HA (1993) Magnesite-siderite series carbonates in the Nkombwa and Newania carbonatite complexes. S Afr J Geol 96:126–130

    Google Scholar 

  • Woolley AR, Church AA (2005) Extrusive carbonatites: a brief review. Lithos 85:1–14

    Article  Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell K (ed) Carbonatites genesis and evolution. Unwin Hyman Ltd, London, pp 1–14

    Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008) Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. Can Miner 46:741–752

    Article  Google Scholar 

  • Workman RK, Hart SR, Jackson M, Regelous M, Farley KA, Blusztajn J, Kurz M, Staudigel H (2004) Recycled metasomatized lithosphere as the origin of Enriched Mantle II (EM2) end-member: evidence from the Samoan Volcanic Chain. Geochem Geophys Geosyst 5:1–44

    Article  Google Scholar 

  • Wyllie PJ (1965) Melting relationships in the system CaO–MgO–CO2–H2O, with petrological applications. J Petrol 6:101–123

    Article  Google Scholar 

  • Yaxley G, Ghosh S, Kiseeva K, Mallik A, Spandler C, Thomson A, Walter M (2019) Chapter 6. CO2-rich melts in the Earth. In: Orcutt B, Daniel I, Dasgupta R (eds) Whole earth carbon: past and present. Cambridge University Press, pp 129–162

  • Yuhara M, Hirahara Y, Nishi N, Kagami H (2005) Rb–Sr, Sm–Nd ages of the phalaborwa carbonatite complex, South Africa. Polar Geosci 18:101–113

    Google Scholar 

  • Zaitsev AN, Bell K (1995) Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola peninsula, Russia. Contrib Miner Petrol 121:324–335

    Article  Google Scholar 

  • Zaitsev AN, Sitnikova MA, Subbotin VV, Fernandez-Suarez J, Jeffries TE (2004) Sallanlatvi complex—a rare example of magnesite and siderite carbonatites. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Geological Society of Great Britain & Ireland, London, pp 201–245

    Google Scholar 

  • Zi JW, Gregory C, Rasmussen B, Sheppard S, Muhling JR (2017) Using monazite geochronology to test the plume model for carbonatites: the example of Gifford Creek Carbonatite Complex, Australia. Chem Geol 463:50–60

    Article  Google Scholar 

  • Zurevinski SE, Mitchell RH (2011) Highly evolved hypabyssal kimberlite sills from Wmindji, Quebec, Canada: insights into the process of flow differentiation in kimberlite magmas. Contrib Miner Petrol 161:765–776

    Article  Google Scholar 

Download references

Acknowledgements

An ARC Future Fellowship (FT 120100198) to Carl Spandler supported this study. We thank Hasting Technology Metals Limited for their sample contributions and hospitality while conducting fieldwork. We also thank Jen Wan from the JCU AAC for her support with the C-O isotope analyses, Christa Placzek for her help with the Sr isotope analyses, as well as Kevin Blake and Shane Askew from the JCU AAC for their assistance with the EPMA analysis. We thank Sam Broom-Fendley, Francisco Pirajno, as well as the editor, Steven Reddy, for their reviews, which improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Slezak.

Additional information

Communicated by Steven Reddy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slezak, P., Spandler, C. Petrogenesis of the Gifford Creek Carbonatite Complex, Western Australia. Contrib Mineral Petrol 175, 28 (2020). https://doi.org/10.1007/s00410-020-1666-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-1666-3

Keywords

Navigation