Skip to main content
Log in

Origin of pyroxenites in the oceanic mantle and their implications on the reactive percolation of depleted melts

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Pyroxenites are diffuse in fertile mantle peridotites and considered an important component in the mantle source of oceanic basalts. They are rarely documented in abyssal and ophiolitic peridotites representing residual mantle after melt generation, and few studies defining their origin are to date available. We present a field-based microstructural and geochemical investigation of the pyroxenite layers associated with depleted peridotites from the Mt. Maggiore ophiolitic body (Corsica, France). Field and petrographic evidence indicate that pyroxenite formation preceded the melt–rock interaction history that affected this mantle sector during Jurassic exhumation, namely (1) spinel-facies reactive porous flow leading to partial dissolution of the pyroxenites, and (2) plagioclase-facies melt impregnation leading to [plagioclase + orthopyroxene] interstitial crystallization. Pyroxenes show major element compositions similar to abyssal pyroxenites from slow-spreading ridges, indicative of magmatic segregation at pressures higher than 7 kbar. Both the parental melts of pyroxenites and the melts involved in the subsequent percolation were characterized by Na2O-poor, LREE-depleted compositions, consistent with unaggregated melt increments. This implies that they represent the continuous evolution of similarly depleted melts leading to different processes (pyroxenite segregation and later melt–rock interaction) during their upward migration. To support the genetic relation and the continuity between the formation of pyroxenites and the subsequent melt–rock interaction history, we modeled all the documented processes in sequence, i.e.: (1) formation of single-melt increments after 6% mantle decompressional fractional melting; (2) high-pressure segregation of pyroxenites; (3) spinel-facies reactive porous flow, (4) plagioclase-facies melt impregnation. The early fractionation of pyroxenites leads to a decrease in pyroxene saturation that is necessary for the subsequent reactive porous flow process, without any significant change in the melt REE composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allègre CJ, Turcotte DL (1986) Implications of a two-component marble-cake mantle. Nature 323:123–127

    Article  Google Scholar 

  • Basch V (2018) Melt–rock interactions in the oceanic lithosphere: microstructural and petro-geochemical constraints from ophiolites. Ph.D. thesis, Università degli Studi di Genova. https://doi.org/10.15167/basch-valentin_phd2018-05-10

  • Basch V, Rampone E, Crispini L, Ferrando C, Ildefonse B, Godard M (2018) From mantle peridotites to hybrid troctolites: textural and chemical evolution during melt–rock interaction history (Mt. Maggiore, Corsica, France). Lithos 323:4–23. https://doi.org/10.1016/j.lithos.2018.02.025

    Article  Google Scholar 

  • Basch V, Rampone E, Crispini L, Ferrando C, Ildefonse B, Godard M (2019) Multi-stage reactive formation of troctolites in slow-spreading oceanic lithosphere (Erro-Tobbio, Italy): a combined field and petrochemical study. J Petrol. https://doi.org/10.1093/petrology/egz019

    Article  Google Scholar 

  • Ben Ismail W, Barruol G, Mainprice D (2001) The Kaapvaal craton seismic anisotropy: petrophysical analyses of upper mantle kimberlite nodules. Geophys Res Lett 28:2497–2500. https://doi.org/10.1029/2000GL012419

    Article  Google Scholar 

  • Bodinier J-L, Fabries J, Lorand J-P, Dostal J, Dupuy C (1987a) Geochemistry of amphibole pyroxenite veins from the Lherz and Freychinede ultramafic bodies (Ariege, French Pyrenees). Bull Minér 110:345–358

    Article  Google Scholar 

  • Bodinier J-L, Guiraud M, Fabries J, Dostal J, Dupuy C (1987b) Petrogenesis of layered pyroxenites from the Lherz, Freychinede and Prades ultramafic bodies (Ariege, French Pyrenees). Geochim Cosmochim Acta 51:279–290

    Article  Google Scholar 

  • Bodinier J-L, Garrido CJ, Chanefo I, Bruguier O, Gervilla F (2008) Origin of pyroxenite–peridotite veined mantle by refertilization reactions: evidence from the Ronda peridotite (Southern Spain). J Petrol 49:999–1025

    Article  Google Scholar 

  • Borghini G, Fumagalli P, Rampone E (2010) The stability of plagioclase in the upper mantle: subsolidus experiments on fertile and depleted lherzolite. J Petrol 51:229–254

    Article  Google Scholar 

  • Borghini G, Fumagalli P, Rampone E (2011) The geobarometric significance of plagioclase in mantle peridotites: a link between nature and experiments. Lithos 126:42–53

    Article  Google Scholar 

  • Borghini G, Rampone E, Zanetti A, Class C, Cipriani A, Hofmann AW, Goldstein SL (2013) Meter-scale Nd isotopic heterogeneity in pyroxenite-bearing Ligurian peridotites encompasses global-scale upper mantle variability. Geology 41:1055–1058

    Article  Google Scholar 

  • Borghini G, Rampone E, Zanetti A, Class C, Cipriani A, Hofmann AW, Goldstein SL (2016) Pyroxenite layers in the Northern Apennines’ Upper Mantle (Italy)—generation by pyroxenite melting and melt infiltration. J Petrol 57:625–653

    Article  Google Scholar 

  • Borghini G, Fumagalli P, Rampone E (2017) Partial melting of secondary pyroxenite at 1 and 15 GPa, and its role in upwelling heterogeneous mantle. Contrib Mineral Petrol 172:70. https://doi.org/10.1007/s00410-017-1387-4

    Article  Google Scholar 

  • Borghini G, Francomme JE, Fumagalli P (2018) Melt–dunite interactions at 0.5 and 0.7 GPa: experimental constraints on the origin of olivine-rich troctolites. Lithos 323:44–57

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Cannat M (1996) How thick is the magmatic crust at slow spreading ridges? J Geophys Res Solid Earth 101:2847–2857

    Article  Google Scholar 

  • Collier ML, Kelemen PB (2010) The case for reactive crystallization at Mid-Ocean ridges. J Petrol 51:1913–1940. https://doi.org/10.1093/petrology/egq043

    Article  Google Scholar 

  • Dantas C, Ceuleneer G, Gregoire M, Python M, Freydier R, Warren J, Dick HJB (2007) Pyroxenites from the Southwest Indian Ridge, 9°–16°E: cumulates from incremental melt fraction produced at the top of a cold melting regime. J Petrol 48:647–660

    Article  Google Scholar 

  • Dantas C, Gregoire M, Koester E, Conceicao RD, Rieck N (2009) The lherzolite–websterite xenolith suite from Northern Patagonia (Argentina): evidence of mantle–melt reaction processes. Lithos 107:107–120

    Article  Google Scholar 

  • De Paolo DJ (1981) Trace elements and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • D’Errico ME, Warren JM, Godard M (2016) Evidence for chemically heterogeneous Arctic mantle beneath the Gakkel ridge. Geochim Cosmochim Acta 174:291–312. https://doi.org/10.1016/j.gca.2015.11.017

    Article  Google Scholar 

  • Dick HJB, Lissenberg CJ, Warren JM (2010) Mantle melting melt transport, and delivery beneath a slow-spreading ridge: the paleo-MAR from 23°15′N to 23°45′N. J Petrol 51:425–467. https://doi.org/10.1093/petrology/egp088

    Article  Google Scholar 

  • Dijkstra AH, Barth MG, Drury MR, Mason PRD, Vissers RLM (2003) Diffuse porous melt flow and melt-rock reaction in the mantle lithosphere at a slow-spreading ridge: a structural petrology and LA-ICP-MS study of the Othris peridotite massif (Greece). Geochem Geophys Geosyst 4:8613. https://doi.org/10.1029/2001GC000278

    Article  Google Scholar 

  • Duncan RA, Green DH (1980) The role of multi-stage melting in the formation of the oceanic crust. Geology 8:22–26

    Article  Google Scholar 

  • Duncan RA, Green DH (1987) The genesis of refractory melts in the formation of oceanic crust. Contrib Miner Petrol 96:326–342

    Article  Google Scholar 

  • Falloon TJ, Green DH (1988) Anhydrous partial melting of peridotite from 8 to 35 kbars and the petrogenesis of MORB. J Petrol 1:379–414

    Article  Google Scholar 

  • Ferrando C, Godard M, Ildefonse B, Rampone E (2018) Melt transport and mantle assimilation at Atlantis Massif (IODP Site U1309): constraints from geochemical modelling. Lithos 323:24–43

    Article  Google Scholar 

  • Fumagalli P, Borghini G, Rampone E, Poli S (2017) Experimental calibration of Forsterite–Anorthite–Ca-Tschermak-Enstatite (FACE) geobarometer for mantle peridotites. Contrib Miner Petrol 172:38

    Article  Google Scholar 

  • Garrido CJ, Bodinier JL (1999) Diversity of mafic rocks in the Ronda peridotite: evidence for pervasive melt– rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. J Petrol 40:729–754

    Article  Google Scholar 

  • Ghiorso MS, Hirschmann M, Reiners PW, Kress VCI (2002) The pMELTS: a revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochem Geophys Geosyst 3:36

    Article  Google Scholar 

  • Gysi AP, Jagoutz O, Schmidt MW, Targuisti K (2011) Petrogenesis of pyroxenites and melt infiltrations in the ultramafic complex of Beni Bousera, Northern Morocco. J Petrol 52:1676–1735

    Article  Google Scholar 

  • Hebert LB, Montési LGJ (2010) Generation of permeability barriers during melt extraction at mid-ocean ridges. Geochem Geophys Geosyst 11:Q12008. https://doi.org/10.1029/2010GC003270

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Mostefaoui S, Hoppe P (2005) Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and NanoSIMS study. Contrib Mineral Petr 150:486–504. https://doi.org/10.1007/s00410-005-0036-5

    Article  Google Scholar 

  • Higgie K, Tommasi A (2012) Feedbacks between deformation and melt distribution in the crust-mantle transition zone of the Oman ophiolite. Earth Planet Sci Lett 359–360:61–72. https://doi.org/10.1016/j.epsl.2012.10.003

    Article  Google Scholar 

  • Higgie K, Tommasi A (2014) Deformation in a partially molten mantle: constraints from plagioclase lherzolites from Lanzo, western Alps. Tectonophysics 615–616:167–181. https://doi.org/10.1016/j.tecto.2014.01.007

    Article  Google Scholar 

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489

    Article  Google Scholar 

  • Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Miner Petrol 124:185–208

    Article  Google Scholar 

  • Holtzman BK, Kohlstedt DL, Zimmerman ME, Heidelbach F, Hiraga T, Hustoft J (2003) Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301:1227–1230. https://doi.org/10.1126/science.1087132

    Article  Google Scholar 

  • Husen A, Renat RA, Holtz F (2016) The effect of H2O and pressure on multiple saturation and liquid lines of descent in basalt from the Shatsky rise. J Petrol 57:309–344. https://doi.org/10.1093/petrology/egw008

    Article  Google Scholar 

  • Jackson MD, Ohnenstetter M (1981) Peridotite and gabbroic structures in the Monte Maggiore massif, Alpine Corsica. J Geol 89:703–719

    Article  Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678. https://doi.org/10.1029/JB095iB03p02661

    Article  Google Scholar 

  • Kaczmarek MA, Tommasi A (2011) Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy. Geochem Geophys Geosyst 12:Q0AG06. https://doi.org/10.1029/2011GC003627

    Article  Google Scholar 

  • Kelemen PB, Kikawa E, Miller DJ, Shipboard Scientific Party (2007) Leg 209 summary: processes in a 20-km thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14°–16°N. In: Kelemen PB, Kikawa E, Miller DJ (eds) Proceedings of the ocean drilling project, scientific results vol 209. Ocean Drilling Program, College Station, pp 1–33. https://doi.org/10.2973/odp.proc.sr.209.001.2007

    Chapter  Google Scholar 

  • Kempton PD, Stephens CJ (1997) Petrology and geochemistry of nodular websterites inclusions in harzburgite, Hole 920D. In: Karson JA et al (eds) Proceedings of the Ocean drilling program, scientific results, vol 153. Ocean Drilling Program, College Station, pp 321–331

    Google Scholar 

  • Keshav S, Sen G, Presnall DC (2007) Garnet-bearing xenoliths from Salt Lake Crater, Oahu, Hawaii: high-pressure fractional crystallization in the oceanic mantle. J Petrol 48:1681–1724

    Article  Google Scholar 

  • Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J Geophys Res 97:6907–6926

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Pertermann M (2004a) High pressure partial melting of mafic lithologies in the mantle. J Petrol 45:2407–2422

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Reiners W (2004b) Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim Cosmochim Acta 68:345–360

    Article  Google Scholar 

  • Lambart S, Laporte D, Schiano P (2013) Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: review of the experimental constraints. Lithos 160–161:14–36

    Article  Google Scholar 

  • Lambart S, Baker MB, Stolper EM (2016) The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. J Geophys Res Solid Earth 121:5708–5735

    Article  Google Scholar 

  • Langmuir CH, Forsyth DW (2007) Mantle melting beneath mid-ocean ridges. Oceanography 20:78–89

    Article  Google Scholar 

  • Langmuir CH, Klein EM, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In: Phipps Morgan J, Blackman DK, Sinton JM (eds) Mantle flow and melt generation at mid-ocean ridges. American Geophysical Union, Washington, DC, pp 183–280

    Google Scholar 

  • Laukert G, Von der Handt A, Hellebrand E, Snow J, Hoppe P, Klugel A (2014) High-pressure reactive melt stagnation recorded in abyssal pyroxenites from the ultraslow-spreading Lena Trough, Arctic Ocean. J Petrol 55:427–458

    Article  Google Scholar 

  • Le Roux V, Tommasi A, Vauchez A (2008) Feedback between melt percolation and deformation in an exhumed lithosphere-asthenosphere boundary. Earth Planet Sci Lett 274:401–413. https://doi.org/10.1016/j.epsl.2008.07.053

    Article  Google Scholar 

  • Mainprice D, Bachmann F, Hielscher R, Schaeben H (2014) Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components. Geological Society of London, London (Special Publication)

    Google Scholar 

  • McCarthy A, Muntener O (2019) Evidence for ancient fractional melting, cryptic refertilization and rapid exhumation of Tethyan mantle (Civrari Ophiolite, NW Italy). Contrib Miner Petrol 174:69–93

    Article  Google Scholar 

  • McKenzie DP (1969) Speculations on the consequences and causes of plate motions. Geophys J R Astron Soc 18:1–32

    Article  Google Scholar 

  • Montési LGJ, Behn MD (2007) Mantle flow and melting underneath oblique and ultraslow MORs. Geophys Res Lett 34:L24307

    Article  Google Scholar 

  • Morishita T, Arai S (2001) Petrogenesis of corundum-bearing mafic rock in the Horoman Peridotite Complex, Japan. J Petrol 42:1279–1299

    Article  Google Scholar 

  • Morishita T, Arai S, Gervilla F, Green DH (2003) Closed system geochemical recycling of crustal materials in the upper mantle. Geochim Cosmochim Acta 67:303–310

    Article  Google Scholar 

  • Mukasa SB, Shervais JW (1999) Growth of sub-continental lithosphere: evidence from repeated injections in the Balmuccia lherzolite massif, Italian Alps. Lithos 48:287–316

    Article  Google Scholar 

  • Müntener O, Piccardo GB (2003) Melt migration in ophiolitic peridotites: the message from Alpine-Apennine peridotites and implications for embryonic ocean basin. In: Dilek Y, Robinson PT (eds) Ophiolites in earth history, vol 218. Geological Society of London, London, pp 69–89 (Special Publication)

    Google Scholar 

  • Müntener O, Manatschal G, Desmurs L, Pettke T (2010) Plagioclase peridotites in ocean-continent transitions: refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. J Petrol 51:255–294

    Article  Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074

    Article  Google Scholar 

  • Niu Y, Hékinian R (1997) Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385:326–329

    Article  Google Scholar 

  • Paquet M, Cannat M, Brunelli D, Hamelin C, Humler E (2016) Effect of melt/mantle interactions on MORB chemistry at the easternmost southwest Indian ridge (61° to 67°E). Geochem Geophys Geosyst 17:4605–4640. https://doi.org/10.1002/2016GC006385

    Article  Google Scholar 

  • Piccardo GB, Guarnieri L (2010) The Monte Maggiore peridotite (Corsica, France): a case study of mantle evolution in the Ligurian Tethys. Geol Soc Lond 337:7–45. https://doi.org/10.1144/SP337.20305-8719/10

    Article  Google Scholar 

  • Piccardo GB, Zanetti A, Müntener O (2007) Melt-peridotite interaction in the southern Lanzo peridotite: field, textural and geochemical evidence. Lithos 94:181–209

    Article  Google Scholar 

  • Rampone E, Borghini G (2008) Melt migration and intrusion in the Erro-Tobbio peridotites (Ligurian Alps, Italy): insights on magmatic processes in extending lithospheric mantle. Eur J Miner 20:573–585

    Article  Google Scholar 

  • Rampone E, Piccardo GB, Vannucci R, Bottazzi P (1997) Chemistry and origin of trapped melts in ophiolitic peridotites. Geochim Cosmochim Acta 61:4557–4569

    Article  Google Scholar 

  • Rampone E, Piccardo GB, Hofmann AW (2008) Multistage melt–rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical records. Contrib Miner Petrol 156:453–475

    Article  Google Scholar 

  • Rampone E, Borghini G, Romairone A, Abouchami W, Class C, Goldstein SL (2014) Sm–Nd geochronology of the Erro-Tobbio gabbros (Ligurian Alps, Italy): insights into the evolution of the Alpine Tethys. Lithos 205:236–246

    Article  Google Scholar 

  • Rampone E, Borghini G, Godard M, Ildefonse B, Crispini L, Fumagalli P (2016) Melt/rock reaction at oceanic peridotite/gabbro transition as revealed by trace element chemistry of olivine. Geochim Cosmochim Acta 190:308–331

    Article  Google Scholar 

  • Rampone E, Borghini G, Basch V (2019) Melt migration and melt–rock reaction in the Alpine-Apennine peridotites: insights on mantle dynamics in extending lithosphere. Geosci Front. https://doi.org/10.1016/j.gsf.2018.11.001

    Article  Google Scholar 

  • Rivalenti G, Mazzucchelli M, Vannucci R, Hofmann AW, Ottolini L, Obermiller W (1995) The relationship between websterite and peridotite in the Balmuccia peridotite massif (NW Italy) as revealed by trace element variations in clinopyroxene. Contrib Miner Petrol 121:275–288

    Article  Google Scholar 

  • Salters VJM, Dick HJB (2002) Mineralogy of the mid ocean ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418:68–72

    Article  Google Scholar 

  • Sanfilippo A, Tribuzio R (2011) Melt transport and deformation history in a nonvolcanic ophiolitic section, northern Apennines, Italy: implications for crustal accretion at slow-spreading settings. Geochem Geophys Geosyst 12:Q0AG04. https://doi.org/10.1029/2010GC003429

    Article  Google Scholar 

  • Sanfilippo A, Dick HJB, Ohara Y, Tiepolo M (2016) New insights on the origin of troctolites from the breakaway area of the Godzilla Megamullion (Parece Vela back-arc basin): the role of melt-mantle interaction on the composition of the lower crust. Island Arc 25:220–234. https://doi.org/10.1111/iar.12137

    Article  Google Scholar 

  • Sanfilippo A, Tribuzio R, Ottolini L, Hamada M (2017) Water, lithium and trace element compositions of olivine from Lanzo South replacive mantle dunites (Western Alps): new constraints into melt migration processes at cold thermal regimes. Geochim Cosmochim Acta 214:51–72. https://doi.org/10.1016/j.gca.2017.07.034

    Article  Google Scholar 

  • Seyler M, Toplis MJ, Lorand JP, Luguet A, Cannat M (2001) Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology 29:155–158

    Article  Google Scholar 

  • Shen Y, Forsyth DW (1995) Geochemical constraints on initial and final depths of melting beneath ocean ridges. J Geophys Res 100:2211–2237

    Article  Google Scholar 

  • Sleep NH, Warren JM (2014) Effect of latent heat of freezing on crustal generation at low spreading rates. Geochem Geophys Geosyst 15:3161–3174

    Article  Google Scholar 

  • Sobolev AV, Shimizu N (1993) Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 363:151–154

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV et al (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417

    Article  Google Scholar 

  • Stracke A, Salters VJM, Sims KWW (1999) Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium–neodymium–thorium isotope systematics. Geochem Geophys Geosyst 1:15

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society, London, pp 313–345 (Special Publications)

    Google Scholar 

  • Takazawa E, Frey FA, Shimizu N, Saal N, Obata M (1999) Polybaric petrogenesis of mafic layers in the Horoman peridotite complex, Japan. J Petrol 40:1827–1831

    Article  Google Scholar 

  • Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrbuch für Mineral Abh 172:381–408

    Google Scholar 

  • Tommasi A, Ishikawa A (2014) Microstructures, composition, and seismic properties of the Ontong Java Plateau mantle root. Geochem Geophys Geosyst. https://doi.org/10.1002/2014GC005452

    Article  Google Scholar 

  • Tommasi A, Vauchez A, Ionov DA (2008) Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth Planet Sci Lett 272:65–77. https://doi.org/10.1016/j.epsl.2008.04.020

    Article  Google Scholar 

  • Van Acken D, Becker H, Walker RJ, McDonough WF, Wombacher F, Ash RD, Piccoli PM (2010) Formation of pyroxenite layers in the Totalp ultramafic massif (Swiss Alps)—Insights from highly siderophile elements and Os isotopes. Geochim Cosmochim Acta 74:661–683

    Article  Google Scholar 

  • Vannucci R, Shimizu N, Piccardo GB, Ottolini L, Bottazzi P (1993) Distribution of trace-elements during breakdown of mantle garnet: an example from Zabargad. Contrib Miner Petrol 113:437–449

    Article  Google Scholar 

  • Villiger S, Ulmer P, Müntener O, Thompson B (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization can experimental study at 1·0 GPa. J Petrol 45:2369–2388

    Article  Google Scholar 

  • Villiger S, Müntener O, Ulmer P (2007) Crystallization pressures of mid-ocean ridge basalts derived from major element variations of glasses from equilibrium and fractional crystallization experiments. J Geophys Res. https://doi.org/10.1029/2006JB004342

    Article  Google Scholar 

  • Warren JM (2016) Global variations in abyssal peridotite compositions. Lithos 248–251:193–219. https://doi.org/10.1016/j.lithos.2015.12.023

    Article  Google Scholar 

  • Warren JM, Shimizu N (2010) Cryptic variations in abyssal peridotite compositions: evidence for shallow-level melt infiltration in the oceanic lithosphere. J Petrol 51:395–423. https://doi.org/10.1093/petrology/egp096

    Article  Google Scholar 

  • Warren JM, Shimizu N, Sakaguchi C, Dick HJB, Nakamura E (2009) An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. J Geophys Res 114:B12203

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72. https://doi.org/10.1016/j.epsl.2004.12.005

    Article  Google Scholar 

  • Yu S, Xu Y, Ma J, Zheng Y, Kuang Y, Hong L, Ge W, Tong L (2010) Remnants of oceanic lower crust in the subcontinental lithospheric mantle: trace element and Sr–Nd–O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, Northeast China. Earth Planet Sci Lett 297:413–422

    Article  Google Scholar 

Download references

Acknowledgements

We thank Veronique Le Roux and an anonymous reviewer for constructive reviews that improved the quality of this manuscript and O. Müntener for his work as editor. We thank Paolo Campanella and Alessandra Gavoglio, Christophe Nevado and Doriane Delmas for realization of the thin section and high-quality polishing, as well as Fabrice Barou for assistance with the EBSD analyses, Andrea Risplendente for assistance with the EPMA. This research has been supported by the Italian Ministry of Education, University and Research (MIUR) through the grant [PRIN-2015C5LN35] “Melt–rock reaction and melt migration in the MORB mantle through combined natural and experimental studies”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Rampone.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basch, V., Rampone, E., Borghini, G. et al. Origin of pyroxenites in the oceanic mantle and their implications on the reactive percolation of depleted melts. Contrib Mineral Petrol 174, 97 (2019). https://doi.org/10.1007/s00410-019-1640-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1640-0

Keywords

Navigation