Skip to main content
Log in

Experimental calibration of Forsterite–Anorthite–Ca-Tschermak–Enstatite (FACE) geobarometer for mantle peridotites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The crystallization of plagioclase-bearing assemblages in mantle rocks is witness of mantle exhumation at shallow depth. Previous experimental works on peridotites have found systematic compositional variations in coexisting minerals at decreasing pressure within the plagioclase stability field. In this experimental study we present new constraints on the stability of plagioclase as a function of different Na2O/CaO bulk ratios, and we present a new geobarometer for mantle rocks. Experiments have been performed in a single-stage piston cylinder at 5–10 kbar, 1050–1150 °C at nominally anhydrous conditions using seeded gels of peridotite compositions (Na2O/CaO = 0.08–0.13; X Cr = Cr/(Cr + Al) = 0.07–0.10) as starting materials. As expected, the increase of the bulk Na2O/CaO ratio extends the plagioclase stability to higher pressure; in the studied high-Na fertile lherzolite (HNa-FLZ), the plagioclase-spinel transition occurs at 1100 °C between 9 and 10 kbar; in a fertile lherzolite (FLZ) with Na2O/CaO = 0.08, it occurs between 8 and 9 kbar at 1100 °C. This study provides, together with previous experimental results, a consistent database, covering a wide range of PT conditions (3–9 kbar, 1000–1150 °C) and variable bulk compositions to be used to define and calibrate a geobarometer for plagioclase-bearing mantle rocks. The pressure sensitive equilibrium:

$$\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{4}}}^{{\text{Ol}}}}\limits_{{\text{Forsterite}}} +\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{8}}}^{{\text{Pl}}}}\limits_{{\text{Anorthite}}~} =\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{6}}}^{{\text{Cpx}}}}\limits_{{\text{Ca-Tschermak}}} +{\text{ }}\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{6}}}^{{\text{Opx}}}}\limits_{{\text{Enstatite}}} ,$$

has been empirically calibrated by least squares regression analysis of experimental data combined with Monte Carlo simulation. The result of the fit gives the following equation:

$$P=7.2( \pm 2.9)+0.0078( \pm 0.0021)T{\text{ }}+0.0022( \pm 0.0001)T{\text{ }}\ln K,$$
$${R^2}=0.93,$$

where P is expressed in kbar and T in kelvin. K is the equilibrium constant K = a CaTs × a en/a an × a fo, where a CaTs, a en, a an and a fo are the activities of Ca-Tschermak in clinopyroxene, enstatite in orthopyroxene, anorthite in plagioclase and forsterite in olivine. The proposed geobarometer for plagioclase peridotites, coupled to detailed microstructural and mineral chemistry investigations, represents a valuable tool to track the exhumation of the lithospheric mantle at extensional environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Beslier M-O, Ask M, Boillot G (1993) Ocean-continent boundary in the Iberia Abyssal Plain from multichannel seismic data. Tectonophysics 218:383–393

    Article  Google Scholar 

  • Bodinier JL, Dupuy C, Dostal J (1988) Geochemistry and petrogenesis of Eastern Pyrenean peridotites. Geochim Cosmochim Acta 52:2893–2907

    Article  Google Scholar 

  • Bodinier JL, Garrido CJ, Chanefo I, Bruguier O, Gervilla F (2008) Origin of pyroxenite–peridotite veined mantle by refertilization reactions: evidence from the Ronda peridotite (Southern Spain). J Petrol 49:999–1025

    Article  Google Scholar 

  • Bonadiman C, Beccaluva L, Coltorti M, Siena F (2005) Kimberlite-like metasomatism and ‘garnet signature’ in spinel–peridotite xenoliths from Sal, Cape Verde archipelago: relics of a subcontinental mantle domain within the Atlantic oceanic lithosphere? J Petrol 46:2465–2493

    Article  Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the island of Zabargad (St. John), Red Sea: petrology and geochemistry. J Geophys Res 91:599–631

    Article  Google Scholar 

  • Borghini G, Rampone E, Crispini L, De Ferrari R, Godard M (2007) Origin and emplacement of ultramafic–mafic intrusions in the Erro-Tobbio mantle peridotite (Ligurian Alps, Italy). Lithos 94:210–229

    Article  Google Scholar 

  • Borghini G, Fumagalli P, Rampone E (2010) The stability of plagioclase in the upper mantle: subsolidus experiments on fertile and depleted lherzolite. J Petrol 51:229–254

    Article  Google Scholar 

  • Borghini G, Fumagalli P, Rampone E (2011) The geobarometric significance of plagioclase in mantle peridotites: a link between nature and experiments. Lithos 126:42–53

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Brunelli D, Seyler M (2010) Asthenospheric percolation of alkaline melts beneath the St. Paul region (Central Atlantic Ocean). Earth Planet Sci Lett 289:393–405

    Article  Google Scholar 

  • Cannat M, Seyler M (1995) Transform tectonics, metamorphic plagioclase and amphibolitization in ultramafic rocks of the Vema transform fault (Atlantic Ocean). Earth Planet Sci Lett 133:283–298

    Article  Google Scholar 

  • Cannat M, Sauter D, Mendel V, Ruellan E, Okino K, Escartin J, Combier V, Baala M (2006) Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34:605–608

    Article  Google Scholar 

  • Carpenter MA, McConnell JDC (1984) Experimental delineation of the C1 = I1 transition in intermediate plagioclase feldspars. Am Mineral 69:112–121

    Google Scholar 

  • Carswell DA (1991) The Garnet-Orthopyroxene Al Barometer: problematic application to natural Garnet Lherzolite assemblages. Mineral Mag 55(378):19–31

    Article  Google Scholar 

  • Chalot-Prat F, Falloon TJ, Green DH, Hibberson WO (2010) An experimental study of liquid compositions in equilibrium with plagioclase + spinel lherzolite at low pressure (0.75 GPa). J Petrol 51:2349–2376

    Article  Google Scholar 

  • Chalot-Prat F, Falloon TJ, Green DH, Hibberson WO (2013) Melting of plagioclase + spinel lherzolite at low pressure (0.5 GPa): an experimental approach to the evolution of basaltic melt during mantle refertilization at shallow depths. Lithos 172–173:61–80

    Article  Google Scholar 

  • Chazot G, Charpentier S, Kornprobst J, Vannucci R, Luais B (2005) Lithospheric mantle evolution during continental break-up: the west Iberia non-volcanic passive margin. J Petrol 46:2527–2568

    Article  Google Scholar 

  • Dick HJB (1989) Abyssal peridotite, very slow spreading ridges and oceanic ridge magmatism. In: Saunders AD, Morris MJ (Eds.) Magmatism in the Ocean Basins. Spec Publ Geol Soc London 42:71–105

  • Dick HJB, Bullen TD (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Dick HJB, Lissemberg CJ, Warren J (2010) Mantle melting, melt transport, and delivery beneath a slow-spreading ridge: the paleo-MAR from 23°15′N to 23°45′N. J Petrol 51:425–467

    Article  Google Scholar 

  • Falloon TJ, Green DH, O’Neill HSC, Hibberson WO (1997) Experimental tests of low degree peridotite partial melt compositions, implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth Planet Sci Lett 152:149–162

    Article  Google Scholar 

  • Frey FA, Shimizu N, Leinbach A, Obata M, Takazawa E (1991) Compositional variations within the Lower Layered Zone of the Horoman peridotite, Hokkaido, Japan: Constraints on models for melt-solid segregation. In: Orogenic Lherzolite and Mantle Processes (ed. M. A. Menzies et al.); J Petrol 211–227

  • Fumagalli P, Klemme S (2015) Mineralogy of the earth: phase transitions and mineralogy of the upper mantle. In: Gerald Schubert (editor-in-chief) treatise on geophysics, vol 2. 2nd edn, Elsevier, Oxford, pp 7–31

    Chapter  Google Scholar 

  • Furusho M, Kanagawa K (1999) Transformation-induced strain localization in a lherzolite mylonite from the Hidaka metamorphic belt of central Hokkaido, Japan. Tectonophysics 313:411–432

    Article  Google Scholar 

  • Gasparik T (1984) Two-pyroxene thermobarometry with new experimental data in the system CaO–MgO–Al2O3–SiO2. Contrib Mineral Petrol 87:87–97

    Article  Google Scholar 

  • Gasparik T (1985) Experimental study of subsolidus phase relations and mixing properties of pyroxene and plagioclase in the system Na2O–CaO–Al2O3–SiO2. Contrib Mineral Petrol 89:346–357

    Article  Google Scholar 

  • Gasparik T (1987) Orthopyroxene thermobarometry in simple and complex systems. Contrib Mineral Petrol 96:357–370

    Article  Google Scholar 

  • Green DH (1963) Alumina content of enstatite in a Venezuelan high-temperature peridotite. Geol Soc Am Bull 74(11):1397

    Article  Google Scholar 

  • Green DH (1964) The petrogenesis of the high-temperature peridotite intrusion in the Lizard Area, Cornwall. J Petrol 5:134–188

    Article  Google Scholar 

  • Green DH, Falloon TJ (1998) Pyrolite: a Ringwood concept and its current expression. In: Jackson I (ed) The earth’s mantle. Cambridge University Press, Cambridge, pp 311–378

    Google Scholar 

  • Green DH, Hibberson W (1970) The instability of plagioclase in peridotite at high pressure. Lithos 3:209–221

    Article  Google Scholar 

  • Green DH, Hibberson WO, Jaques AL (1979) Petrogenesis of mid ocean ridge basalt. In: McElhinney MW (ed) The earth: its origin, structure and evolution. Academic Press, London, pp 265–299

    Google Scholar 

  • Hamilton DL, Henderson CMB (1968) The preparation of silicate compositions by a gelling method. Mineral Mag 36:832–838

    Article  Google Scholar 

  • Hamlyn PR, Bonatti E (1980) Petrology of mantle-derived ultramafic from the Owen fracture zone, northwest Indian Ocean: implications for the nature of the oceanic upper mantle. Earth Planet Sci Lett 48:65–79

    Article  Google Scholar 

  • Herzberg CT (1978) Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO–MgO–Al2O3–SiO2. Geochim Cosmochim Acta 42:945–957

    Article  Google Scholar 

  • Hidas K, Garrido C, Tommasi A, Padron-Navarta JA, Thielmann M, Konc Z, Frets E, Marchesi C (2013) Strain localization in pyroxenite by reaction-enhanced softening in the shallow subcontinental lithospheric mantle. J Petrol 54:1997–2031

    Article  Google Scholar 

  • Hodges HV, Crowley PD (1985) Error estimation and empirical geothermobarometry for politic systems. Am Mineral 70:702–709

    Google Scholar 

  • Holland T, Powell R (1992) Plagioclase feldspars: activity-composition relations based upon Darken’s quadratic formalism and Landau theory. Am Mineral 77:53–61

    Google Scholar 

  • Ionov DA, O’Reilly SY, Ashchepkov V (1995) Feldspar-bearing lherzolite xenoliths in alkali basalts from Hamar–Daban Baikal region, Russia. Contrib Mineral Petrol 122:174–190

    Article  Google Scholar 

  • Kaczmarek MA, Müntener O (2008) Juxtaposition of melt impregnation and high-temperature shear zones in the upper mantle; field and petrological constraints from the Lanzo peridotite (Northern Italy). J Petrol 49:2187–2220

    Article  Google Scholar 

  • Kaczmarek MA, Müntener O (2010) The variability of peridotite composition across a mantle shear zone (Lanzo massif, Italy): interplay of melt focusing and deformation. Contrib Mineral Petrol 160:663–679

    Article  Google Scholar 

  • Kelemen PB, Kikawa E, Miller DJ (2007) Leg 209 summary: processes in a 20-km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14_-16_N. In: Proceedings of the ODP, science results 209 (eds. P. B. Kelemen, E. Kikawa and D. J. Miller). Ocean Drilling Program, College Station, TX, pp. 1–33

  • Kerrick DM, Darken LS (1975) Statistical thermodynamic models for ideal oxide and silicate solutions, with applications to plagioclase. Geochim Cosmochim Acta 39:1431–1442

    Article  Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102:853–874

    Article  Google Scholar 

  • Klemme S (2004) The influence of Cr on the garnet-spinel transition in the earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos 77:639–646

    Article  Google Scholar 

  • Kohn MJ, Spear FS (1989) Empirical calibration of geobarometers for the assemblage garnet + hornblende + plagioclase + quartz. Am Mineral 74:77–84

    Google Scholar 

  • Kornprobst J, Tabit A (1988) Plagioclase-Bearing ultramafic tectonites from the Galicia margin (Leg 103, Site 637): comparison of their origin and evolution with low pressure ultramafic bodies in western Europe. Proc Ocean Drill Project Sci Res 103:253–263

    Google Scholar 

  • Kushiro I, Yoder HS (1966) Anorthite–forsterite and anorthite–enstatite reactions and their bearing on the basalt-eclogite transformation. J Petrol 7:337–362

    Article  Google Scholar 

  • Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612

    Article  Google Scholar 

  • Leake BE (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Am Mineral 82:1019–1037

    Google Scholar 

  • Manatschal G (2004) New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci (Geol Rundsch) 93:432–466

    Article  Google Scholar 

  • Manatschal G, Müntener O (2009) A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics 473:4–19

    Article  Google Scholar 

  • Martin AP, Cooper AF, Price RC (2014a) Increased mantle heat flow with on-going rifting of the West Antarctic rift system inferred from characterisation of plagioclase peridotite in the shallow Antarctic mantle. Lithos 190–191:173–190

    Article  Google Scholar 

  • Martin AP, Price RC, Cooper AF (2014b) Constraints on the composition, source and petrogenesis of plagioclase-bearing mantle peridotite. Earth Sci Rev 138:89–101

    Article  Google Scholar 

  • McCarthy TC, Patino-Douce E (1998) Empirical calibration of the silica-Ca-tschermak’s-anorthite (SCAn) geobarometer. J Metamorphic Geol 16:675–686

    Article  Google Scholar 

  • Michael PJ, Langmuir CH, Dick HJB, Snow JE, Goldstein SL, Graham DW, Lehnert K, Kurras G, Jokat W, Muhe R, Edmonds HN (2003) Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423:956–961

    Article  Google Scholar 

  • Montanini A, Tribuzio R, Anczkiewicz R (2006) Exhumation history of a garnet pyroxenite-bearing mantle section from a continent-ocean transition (Northern Apennine ophiolites, Italy). J Petrol 47:1943–1971

    Article  Google Scholar 

  • Müntener O, Manatschal G (2006) High degrees of melt extraction recorded by spinel harzburgite of the Newfoundland margin: the role of inheritance and consequences for the evolution of the southern North Atlantic. Earth Planet Sci Lett 252:437–452

    Article  Google Scholar 

  • Müntener O, Pettke T, Desmours L, Meier M, Schaltegger U (2004) Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd-isotope evidence and implications for crust-mantle relationships. Earth Planet Sci Lett 221:293–308

    Article  Google Scholar 

  • Müntener O, Manatschal G, Desmours L, Pettke T (2010) Plagioclase peridotites in ocean-continent transitions: refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. J Petrol 51:255–294

    Article  Google Scholar 

  • Newman J, Lamb WM, Drury MR, Vissers RLM (1999) Deformation processes in a peridotite shear zone: reaction-softening by an H2O-deficient, continuous net transfer reaction. Tectonophysics 303:193–222

    Article  Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40

    Article  Google Scholar 

  • Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Mineral Petrol 159:411–427

    Article  Google Scholar 

  • Niu YL (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45:2423–2458

    Article  Google Scholar 

  • Obata M (1976) The solubility of Al2O3 in orthopyroxenes in spinel and plagioclase peridotites and spinel pyroxenite. American Mineralogists 61:804–816

    Google Scholar 

  • Obata M (1980) The Ronda peridotite: garnet-spine1 and plagioclase-lherzolite and the P–T trajectories of a high-temperature mantle intrusion. J Petrol 21:533–572

    Article  Google Scholar 

  • Ozawa K, Takahashi N (1995) P–T history of a mantle diapir: the Horoman peridotite complex, Hokkaido, northern Japan. Contrib Mineral Petrol 120:223–248

    Article  Google Scholar 

  • Piccardo GB, Vissers RLM (2007) The pre-oceanic evolution of the Erro-Tobbio peridotite (Voltri Massif, Ligurian Alps, Italy). J Geodyn 43:417–449

    Article  Google Scholar 

  • Piccardo GB, Messiga B, Vannucci R (1988) The Zabargad peridotite–pyroxenite association: petrological constraints on its evolution. Tectonophysics 150:135–162

    Article  Google Scholar 

  • Piccardo GB, Müntener O, Zanetti A, Pettke T (2004) Ophiolitic peridotites of the Alpine–Apennine system: mantle processes and geodynamic relevance. Int Geol Rev 46:1119–1159

    Article  Google Scholar 

  • Piccardo GB, Zanetti A, Poggi E, Spagnolo G, Müntener O (2007) Melt/peridotite interaction in the Lanzo South peridotite: field, textural and geochemical evidence. Lithos 94:181–209

    Article  Google Scholar 

  • Presnall DC, Dixon JR, O’Donnell TH, Dixon SA (1979) Generation of mid-ocean ridge tholeiites. J Petrol 20:3–35

    Article  Google Scholar 

  • Rampone E, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1993) Subsolidus reactions monitored by trace element partitioning: the spinel- to plagioclasi-facies transition in mantle peridotites. Contrib Mineral Petrol 115:1–17

    Article  Google Scholar 

  • Rampone E, Hofmann AW, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1995) Petrology, mineral and isotope geochemistry of the External Liguride peridotites (Northern Apennines, Italy). J Petrol 123:61–76

    Google Scholar 

  • Rampone E, Hofmann AW, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1996) Trace element and isotope geochemistry of depleted peridotites from an N-MORB type ophiolite (Internal Liguride, N. Italy). Contrib Mineral Petrol 123:61–76

    Article  Google Scholar 

  • Rampone E, Piccardo GB, Vannucci R, Bottazzi P (1997) Chemistry and origin of trapped melts in ophiolitic peridotites. Geochim Cosmochim Acta 61:4557–4569

    Article  Google Scholar 

  • Rampone E, Romairone A, Abouchami W, Piccardo GB, Hofmann W (2005) Chronology, petrology and isotope geochemistr of the Erro-Tobbio peridotites (Ligurian Alps, Italy): records of late Palaeozoic lithospheric extension. J Petrol 46:799–827

    Article  Google Scholar 

  • Rampone E, Piccardo GB, Hofmann AW (2008) Multi-stage melt-rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical records. Contrib Mineral Petrol 156:453–475

    Article  Google Scholar 

  • Sano S, Kimura JI (2007) Clinopyroxene REE geochemistry of the Red Hills peridotite, New Zealand: interpretation of magmatic processes in the upper mantle and in the Moho transition zone. J Petrol 48:113–139

    Article  Google Scholar 

  • Secchiari A, Montanini A, Bosch D, Macera P, Cluzel D (2016) Melt Extraction and enrichment processes in the New Caledonia lherzolites: Evidence from geochemical and Sr–Nd isotope data. Lithos 260:28–43

    Article  Google Scholar 

  • Sinigoi S, Comin-Chiaramonti P, Alberti AA (1980) Phase relations in the partial melting of the Baldissero spinel-lherzolite (Ivrea–Verbano Zone, Western Alps, Italy). Contrib Mineral Petrol 75:111–121

    Article  Google Scholar 

  • Takahashi N (2001) Origin of plagioclase lherzolites from Nikanbetsu peridotite complex, Hokkaido, Northern Japan: implications for incipient melt migration and segregation in the partially molten upper mantle. J Petrol 42:39–54

    Article  Google Scholar 

  • Takazawa E, Frey F, Shimizu N, Obata M (1996) Evolution of the Horoman peridotite (Hokkaido, Japan): implications from pyroxene compositions. Chem Geol 134:3–26

    Article  Google Scholar 

  • Takazawa E, Frey FA, Shimizu N, Obata M (2000) Bulk rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process? Geochim et Cosmochim Acta 64:695–716

    Article  Google Scholar 

  • Tamura A, Arai S, Ishimaru S, Andal ES (2008) Petrology and geochemistry of peridotites from IODP Site U1309 at Atlantis Massif, MAR 30°N: micro- and macro-scale melt penetrations into peridotites. Contrib Mineral Petrol 155:491–509

    Article  Google Scholar 

  • Tartarotti P, Susini S, Nimis P, Ottolini L (2002) Melt migration in the upper mantle along the Romanche fracture zone (Equatorial Atlantic). Lithos 63:125–149

    Article  Google Scholar 

  • Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulation for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. N Jb Min Abh 172:381–408

    Google Scholar 

  • Ulmer P, Luth RW (1991) The graphite fluid equilibrium in P, T, fO2 space: an experimental determination to 30 kbar and 1600 °C. Contrib Mineral Petrol 106:265–272

    Article  Google Scholar 

  • Van der Wal D, Vissers RLM (1996) Structural petrology of the Ronda peridotite, SW Spain: deformation history. J Petrol 37:23–43

    Article  Google Scholar 

  • Voshage H, Sinigoi S, Mazzucchelli M, Demarchi G, Rivalenti G, Hofmann AW (1988) Isotopic constraints on the origin of ultramafic and mafic dikes in the Balmuccia peridotite (Ivrea Zone). Contrib Mineral Petrol 100:261–267

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  Google Scholar 

  • Walter MJ, Presnall DC (1994) Melting behaviour of simplified lherzolite in the system CaO–MgO–Al2O3–SiO2–Na2O from 7 to 35 kbar. J Petrol 35:329–359

    Article  Google Scholar 

  • Warren JM (2016) Global variations in abyssal peridotite compositions. Lithos 248–251:193–219

    Article  Google Scholar 

  • Warren JM, Shimizu N (2010) Cryptic variations in abyssal peridotite compositions: evidence for shallow-level melt infiltration in the oceanic lithosphere. J Petrol 51:395–423

    Article  Google Scholar 

  • Wood BJ (1979) Activity–composition relationships in Ca (Mg, Fe) Si2O6–CaAl2SiO6 clinopyroxene solid solutions. Am J Sci 279:854–875

    Article  Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank A. Risplendente for the valuable assistance with the electron microprobe. The authors are thankful to C. Herzberg and P. Nimis for their reviews and to O. Müntener for his valuable work as editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fumagalli.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fumagalli, P., Borghini, G., Rampone, E. et al. Experimental calibration of Forsterite–Anorthite–Ca-Tschermak–Enstatite (FACE) geobarometer for mantle peridotites. Contrib Mineral Petrol 172, 38 (2017). https://doi.org/10.1007/s00410-017-1352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1352-2

Keywords

Navigation