Skip to main content

Advertisement

Log in

Composition, melting and evolution of the upper mantle beneath the Jurassic Pindos ocean inferred by ophiolitic ultramafic rocks in East Othris, Greece

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Large ultramafic bodies of the East Othris ophiolite in Central Greece consist of serpentinites, of harzburgite precursors, as well as serpentinized lherzolites, which have been intruded by thin dykes of olivine-rich and olivine-poor pyroxenites. They represent parts of partially altered upper mantle wedge rocks in a Mid-Late Jurassic intraoceanic subduction setting of the Pindos microocean, a western strand of the Tethyan oceanic realm. Serpentinization and rodingitization occurred during their exhumation toward the fore-arc oceanic region and accretionary prism through a subduction channel. Petrography and geochemistry show that protoliths of most serpentinites and serpentinized peridotites are harzburgites, while few are more fertile lherzolites. Petrogenetic modeling reveals that the former harzburgites correspond to highly depleted residual mantle peridotites, which formed after moderate degrees (~13–20 %) of hydrous partial melting, whereas lherzolites, being closely related to the ophiolitic mantle peridotites of West Othris, resulted after lower partial melting degrees (~7–10 %). Mineral chemistry and geochemical data from pyroxenites imply that they have been derived after crystallization of a subduction-related IAT hydrous magma that formed after moderate partial melting degrees (~14–19 %), quite similar to those that produced the harzburgites. Melting processes for the East Othris mantle peridotites occurred in the spinel-stability field, at estimated equilibrium temperatures ranging between 900 and 1,050 °C and pressures between 1.4 and 1.7 GPa, in a rather highly oxidized environment. It is estimated that the primary IAT magma, formed under relatively high temperatures with liquidus temperature at ~1,260 °C and mantle potential temperature at ~1,372 °C. Cooling rates of the shallow mantle beneath the Pindos oceanic basin, from its Mid-Triassic rift/drift phase and the subsequently developed Mid-Late Triassic short-lived intraoceanic subduction, to the Mid-Late Jurassic main subduction phase, are estimated at ~0.7 and ~1.6 °C/Ma, respectively, with the latter being considered as unusually high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbott D, Burgess L, Longhi J, Smith WHF (1994) An empirical thermal history of the Earth’s upper mantle. J Geophys Res 99:13835–13850

    Google Scholar 

  • Aldanmaz E, Schmidt MW, Gourgaud A, Meisel T (2009) Mid-ocean ridge and supra-subduction geochemical signatures in spinel–peridotites from the Neotethyan ophiolites in SW Turkey: implications for upper mantle melting processes. Lithos 113:691–708

    Google Scholar 

  • Arai S, Kadoshima K, Morishita T (2006) Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels. J Geol Soc 163:869–879

    Google Scholar 

  • Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114:331–348

    Google Scholar 

  • Barth M, Gluhak T (2009) Geochemistry and tectonic setting of mafic rocks from the Othris Ophiolite, Greece. Contrib Mineral Petrol 157:23–40

    Google Scholar 

  • Barth MG, Mason PRD, Davies GR, Dijkstra AH, Drury MR (2003) Geochemistry of the Othris Ophiolite, Greece: evidence for refertilization? J Petrol 44:1759–1785

    Google Scholar 

  • Barth MG, Mason PRD, Davies GR, Drury MR (2008) The Othris Ophiolite, Greece: a snapshot of subduction initiation at a mid-ocean ridge. Lithos 100:234–254

    Google Scholar 

  • Batanova VG, Sobolev AV (2000) Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology 28:55–58

    Google Scholar 

  • Beccaluva L, Ohnestetter D, Ohnestetter M, Paupy A (1984) Two magmatic series with island arc affinities within the Vourinos ophiolites. Contrib Mineral Petrol 85:253–271

    Google Scholar 

  • Beccaluva L, Macciotta G, Piccardo GB, Zeda O (1989) Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chem Geol 77:165–182

    Google Scholar 

  • Beccaluva L, Coltorti M, Saccani E, Siena F (2005) Magma generation and crustal accretion as evidenced by supra-subduction ophiolites of the Albanide: Hellenide subpelagonian zone. Island Arc 14:551–563

    Google Scholar 

  • Berger J, Femenias O, Mercier JC, Demaiffe D (2005) Ocean-floor hydrothermal metamorphism in the Limousin ophiolites (western French Massif Central): evidence of a rare preserved Variscan oceanic marker. J Metamorphic Geol 23:795–812

    Google Scholar 

  • Berly TJ, Hermann J, Arculus RJ, Lapierre H (2006) Supra-subduction Zone Pyroxenites from San Jorge and Santa Isabel (Solomon Islands). J Petrol 47:1531–1555

    Google Scholar 

  • Bettison-Varga L, Schiffman P, Janecky DR (1995) Fluid-rock interaction in the hydrothermal upflow zone of the Solea graben, Troodos ophiolite, Cyprus. Geol Soc Amer Spec Pap 296:81–100

    Google Scholar 

  • Blundy JD, Holland TJB (1990) Calcic amphibole equilibria and a new amphibole–plagioclase geothermometer. Contrib Mineral Petrol 104:208–224

    Google Scholar 

  • Bodinier JL, Godard M (2003) Orogenic, ophiolitic, and abyssal peridotites. In: Carlson RW (ed) Treatise on geochemistry. 2. Geochemistry of the mantle and core. Elsevier, Amsterdam, pp 103–170

    Google Scholar 

  • Bortolotti V, Chiari M, Marroni M, Pandolfi L, Principi G, Saccani E (2013) Geodynamic evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): one, two, or more oceanic basins? Int J Earth Sci 102:783–811

    Google Scholar 

  • Boschi C, Bonatti E, Ligi M, Brunelli D, Dallai L, D’Orazio M, Früh-Green GL, Tonarini S, Barnes J, Bedini R (2013) Serpentinization of mantle peridotites along an uplifted lithospheric section, Mid Atlantic Ridge at 11° N. Lithos 178:3–23

    Google Scholar 

  • Brocker M, Enders M (1999) U-Pb zircon geochronology of unusual eclogite facies rocks from Syros and Tinos (Cyclades, Greece). Geol Mag 136:111–118

    Google Scholar 

  • Buse B, Schumacher J, Sparks R, Field M (2010) Growth of bultfonteinite and hydrogarnet in metasomatized basalt xenoliths in the B/K9 kimberlite, Damtshaa, Botswana: insights into hydrothermal metamorphism in kimberlite pipes. Contrib Mineral Petrol 160:533–550

    Google Scholar 

  • Campbell IH (2001) Identification of ancient mantle plumes. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geol Soc Amer Spec Pap 352:5–21

  • Chen J, Zeng Z (2007) Metasomatism of the peridotites from southern Mariana fore-arc: trace element characteristics of clinopyroxene and amphibole. Sci China Ser D Earth Sci 50:1005–1012

    Google Scholar 

  • Coleman RG (1977) Ophiolites. Ancient oceanic lithosphere?. Springer, Berlin, pp 1–229

    Google Scholar 

  • De Hoog JCM, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270:196–215

    Google Scholar 

  • Deschamps F, Guillot S, Gvel C, Andreani M, Hattori K (2010) In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chem Geol 269:262–277

    Google Scholar 

  • Dijkstra AH, Drury MR, Vissers RLM (2001) Structural petrology of plagioclase peridotites in the West Othris Mountains (Greece): melt impregnation in mantle lithosphere. J Petrol 42:5–24

    Google Scholar 

  • Dijkstra AH, Barth MG, Drury MR, Mason PRD, Vissers RLM (2003) Diffuse porous melt flow and melt-rock reaction in the mantle lithosphere at a slow-spreading ridge: a structural petrology and LA-ICP-MS study of the Othris Peridotite Massif (Greece). Geochem Geophys Geosys 4:8613

    Google Scholar 

  • Dilek Y, Furnes H (2009) Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos 113:1–20

    Google Scholar 

  • Dilek Y, Furnes H, Shallo M (2008) Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 100:174–209

    Google Scholar 

  • Downes H (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe. J Petrol 42:233–250

    Google Scholar 

  • Dungan MA (1979) Bastite pseudomorphs after orthopyroxene, clinopyroxene and tremolite. Can Mineral 17:729–740

    Google Scholar 

  • Economou EM, Naldrett AJ (1984) Sulfides associated with podiform bodies of chromite at Tsagli, Eretria, Greece. Miner Deposita 19:289–297

    Google Scholar 

  • Evans BW (1977) Metamorphism of alpine peridotite and serpentinite. Annu Rev Earth Planet Sci Lett 5:397–447

    Google Scholar 

  • Fabriès J (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol 69:329–336

    Google Scholar 

  • Fang N, Niu Y (2003) Late palaeozoic ultramafic Lavas in Yunnan, SW China, and their Geodynamic Significance. J Petrol 44:141–158

    Google Scholar 

  • Ferrière J (1982) Paleogeopraphie et tectoniques superposées dans les Hellénides internes: les massifs de l’Othrys et du Pélion (Grèce septentrional). Thése, sciences Univ. Lille- Societe Géologique Du Nord 8:1–970

    Google Scholar 

  • Ferrière J, Chanier F, Ditbanjong P (2012) The Hellenic ophiolites: eastward or westward obduction of the Maliac Ocean, a discussion. Int J Earth Sci 101:1559–1580

    Google Scholar 

  • Frost BR (1975) Contact metamorphism of serpentinite, chloritic blackwall, and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington. J Petrol 16:272–313

    Google Scholar 

  • Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368

    Google Scholar 

  • Garfunkel Z (2006) Neotethyan ophiolites: formation and obduction within the life cycle of the host basins. In: Robertson AHF, Mountrakis D (eds) Tectonic development of the eastern mediterranean region. Geol Soc London Spec Publ 260:301–326

  • Gillis KM, Robinson PT (1988) Distribution of alteration zones in the upper oceanic crust. Geology 16:262–266

    Google Scholar 

  • Gysi AP, Jagoutz O, Schmidt MW, Targuisti K (2011) Petrogenesis of pyroxenites and melt infiltrations in the ultramafic complex of Beni Bousera, Northern Morocco. J Petrol 52:1679–1735

    Google Scholar 

  • Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and Trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Google Scholar 

  • Herzberg CT (1993) Lithosphere peridotites of the Kaapvaal craton. Earth Planet Sci Lett 120:13–29

    Google Scholar 

  • Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophys Geosys 9. doi:10.1029/2008GC002057

  • Herzberg C, Gazel E (2009) Petrological evidence for secular cooling in mantle plumes. Nature 458:619–622

    Google Scholar 

  • Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2007) Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochem Geophys Geosys 8. doi:10.1029/2006GC001390

  • Herzberg C, Condie K, Korenaga J (2010) Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett 292:79–88

    Google Scholar 

  • Hubbard MS (1996) Ductile shear as a cause of inverted metamorphism: example from the Nepal Himalaya. J Geol 104:493–499

    Google Scholar 

  • Ishizuka H (1985) Prograde metamorphism of the Horokanai ophiolite in the Kamuikotan Zone, Hokkaido, Japan. J Petrol 26:391–417

    Google Scholar 

  • Jochum KP, Arndt PNT, Hofmann AW (1991) Nb-Ta-La in komatiites and basalts: constraints on komatiite petrogenesis and mantle evolution. Earth Planet Sci Lett 107:272–289

    Google Scholar 

  • Johnson A, Schwab B (2004) Constrainst on clinopyroxene/melt partitioning REE, Rb, Sr, Ti, Cr, Zr, and Nb during mantle melting: first insights from direct peridotite melting experiments at 1.0 GPa. Geochim et Cosmochim Acta 68:4949–4962. doi:10.1016/j.gca.2004.06.009

    Google Scholar 

  • Jones G, Robertson AHF (1991) Tectono-stratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, northwestern Greece. J Geol Soc London 148:267–288

    Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671

    Google Scholar 

  • Katsikatsos G (1992) Geology of Greece. University of Patras, pp 1–451

  • Katzir Y, Avigad D, Matthews A, Garfunkel Z, Evans BW (1999) Origin and metamorphism of ultrabasic rocks associated with a subducted continental margin, Naxos (Cyclades, Greece). J Met Geol 17:301–318

    Google Scholar 

  • Keiter M, Piepjohn K, Ballhaus C, Lagos M, Bode M (2004) Structural development of high-pressure metamorphic rocks on Syros island (Cyclades, Greece). J Struct Geol 26:1433–1445

    Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607

    Google Scholar 

  • Kerrich R, Polat A, Wyman D, Hollings P (1999) Trace element systematics of Mg-, to Fe-tholeiitic basalt suits of the Superior Province: implications for Archean mantle reservoirs and greenstone belt genesis. Lithos 46:163–187

    Google Scholar 

  • Kilias A, Frisch W, Avgerinas A, Dunkl I, Falalakis G, Gawlick HJ (2010) Alpine architecture and kinematics of deformation of the northern Pelagonian nappe pile in the Hellenides. Aust J Earth Sci 103:4–28

    Google Scholar 

  • Koutsovitis P (2012) Gabbroic rocks in ophiolitic occurrences from East Othris, Greece: petrogenetic processes and geotectonic environment implications. Mineral Petrol 104:249–265. doi:10.1007/s00710-011-0191-5

    Google Scholar 

  • Koutsovitis P, Magganas A (2010) The geochemistry and petrogenesis of volcanic rocks within ophiolitic formations at the northeast Othris region, Greece. In: Proceedings of the XIX congress of the carpathian-balkan geological association, special vol 99, pp 263–227

  • Koutsovitis P, Magganas A, Katerinopoulos A (2009) Calc-alkaline volcanic rocks in mélange formations from the South Othris region, Greece: petrogenetic and geotectonic implications. Geochem Mineral Petrol 47:79–95

    Google Scholar 

  • Koutsovitis P, Magganas A, Ntaflos T (2012) Rift and intra-oceanic subduction signatures in the Western Tethys during the Triassic: the case of ultramafic lavas as part of an unusual ultramafic–mafic–felsic suite in Othris, Greece. Lithos 144–145:177–193. doi:10.1016/j.lithos.2012.03.018

    Google Scholar 

  • Koutsovitis P, Magganas A, Pomonis P, Ntaflos T (2013) Subduction-related rodingites from East Othris, Greece: mineral reactions and physicochemical conditions of formation. Lithos 172–173:139–157. doi:10.1016/j.lithos.2013.04.009

    Google Scholar 

  • Lacassin R, Arnaud N, Leloup PH, Armijo R, Meyer B (2007) Syn- and post-orogenic exhumation of metamorphic rocks in North Aegean. eEarth 2:51–63

    Google Scholar 

  • Lassiter JC (2006) Constraints on the coupled thermal evolution of the Earth’s core and mantle, the age of the inner core, and the origin of the 186Os/188Os “core signal” in plume-derived lavas. Earth Plan Sci Lett 250:306–317. doi:10.1016/j.epsl.2006.07.044

    Google Scholar 

  • Leblanc M, Lbouabi M (1988) Native silver mineralization along a rodingite tectonic contact between serpentine and quartz diorite (Bou Azzer, Morocco). Econ Geol 83:1379–1391

    Google Scholar 

  • Lee C-TA, Brandon AD, Norman M (2003) Vanadium in peridotites as a proxy of paleo-fO 2 during partial melting: prospects, limitations and implications. Geochim Cosmochim Acta 67:3045–3064

    Google Scholar 

  • Li XP, Rahn M, Bucher K (2004) Metamorphic Processes in Rodingites of the Zermatt-Saas Ophiolites. Inter Geol Rev 46:28–51

    Google Scholar 

  • Li XP, Rahn M, Bucher K (2008) Eclogite facies metarodingites: phase relations in the system SiO2–Al2O3–Fe2O3–FeO–MgO–CaO–CO2–H2O: an example from the Zermatt-Saas ophiolite. J Metam Geol 26:347–364

    Google Scholar 

  • Liou JG, Maruyama S, Cho M (1985) Phase equilibria and mineral parageneses of metabasites in low grade metamorphism. Miner Mag 49:321–333

    Google Scholar 

  • Lips ALW, Wijbrans JR, White SH (1999) New insights from 40Ar/39Ar laserprobe dating of white mica fabrics from the Pelion Massif, Pelagonian Zone, Internal Hellenides, Greece: implications for the timing of metamorphic episodes and tectonic events in the Aegean region. Geol Soc London Spec Publ 156:457–474

    Google Scholar 

  • Magganas Α (2002) Constraints on the petrogenesis of Evros ophiolite extrusives, NE Greece. Lithos 65:165–182

    Google Scholar 

  • Magganas A, Economou M (1988) On the chemical composition of chromite ores from the ophiolitic complex of Soufli, NE Greece. Ofioliti 13:15–28

    Google Scholar 

  • Manning CE, Bird DK (1995) Porosity, permeability and basalt metamorphism. In: Schiffman P, Day HW (eds) Low-grade metamorphism of mafic rocks. Geol Soc Amer Spec Pap 296:123–140

  • Marchesi C, Garrido C, Godard M, Proenza J, Gervilla F, Blanco-Moreno J (2006) Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contrib Mineral Petrol 151:717–736

    Google Scholar 

  • Mcdonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • McKenzie DP, O’Nions RK (1991) Partial melt distribution from inversion of rare earth element concentrations. J Petrol 32:1021–1991

    Google Scholar 

  • Migiros G, Hatzipanagiotou K, Pavlopoulos A, Moulas I, Tsagalidis A (1997) Les roches métabasiques d’Erétria (Othrys du Nord, Grèce Centrale): un nouvel épisode magmatique de type MORB au Crétacé? Annales de la Societe geologique du Nord 5:59–67

    Google Scholar 

  • Mogessie A, Rammlmair D (1994) Occurrence of zoned uvarovite-grossular garnet in a rodingite from the vumba schist belt, Botswana, Africa: implications for the Origin of Rodingites. Mineral Mag 58:375–386

    Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Google Scholar 

  • Morishita T, Dilek Y, Shallo M, Tamura A, Arai S (2011) Insight into the uppermost mantle section of a maturing arc: the Eastern Mirdita ophiolite, Albania. Lithos 124:215–226

    Google Scholar 

  • Nakagawa T, Tackley PJ (2012) Influence of magmatism on mantle cooling, surface heat flow and Urey ratio. Earth Plan Sci Lett 329–330:1–10

    Google Scholar 

  • Nisbet EG, Cheadle MJ, Arndt NT, Bickle MJ (1993) Constraining the potential temperature of the Archaean mantle: a review of the evidence from komatiites. Lithos 30:291–307

    Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074

    Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45:2423–2458

    Google Scholar 

  • Niu Y, Gilmore T, Mackie S, Greig A, Bach W (2002) Mineral chemistry, whole-rock compositions and petrogenesis of ODP Leg 176 gabbros: data and discussion (on line). Proc Ocean Drill Prog Sci Results 176:1–60

    Google Scholar 

  • Ntaflos T, Tschegg C, Coltorti M, Akinin VV, Kosler J (2008) Asthenospheric signature in fertile spinel lherzolites from the Viliga Volcanic Field in NE Russia. Geological Society, London, Special Publications 293:57–81

    Google Scholar 

  • O’Hanley DS (1996). Serpentinites: records of tectonic and petrological history. Oxford monographs on geology and geophysics. Oxford University Press, pp 1–277

  • O’Reilly SY, Griffin WL, Ryan CG (1997) Minor elements in olivine from spinel lherzolite xenoliths; implications for thermobarometry. Mineral Mag 61:257–269

    Google Scholar 

  • Papanikolaou D (2009) Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides. Lithos 108:262–280

    Google Scholar 

  • Parkinson IJ, Pearce JA (1998) Peridotites from the Izu-Bonin-Mariana forearc (ODP leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J Petrol 39:1577–1618

  • Parkinson IJ, Pearce JA, Thirlwall MF, Johnson KTM, Ingram G (1992) Trace element geochemistry of peridotites from the Izu–Bonin–Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Stokking LB, et al (eds) Proceedings of the ocean drilling program scientific results, 125. Ocean Drilling Program, College Station, pp 487–506

  • Parman SW, Dann JC, Grove TL, de Wit MJ (1997) Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation. Barberton Greenstone Belt, South Africa: Earth Planet Sci Lett 150:303–323

    Google Scholar 

  • Paulick H, Bach W, Godard M, De Hoog JCM, Suhr G, Harvey J (2006) Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chem Geol 234:179–210

    Google Scholar 

  • Peacock SM (2013) Thermal structure and metamorphic evolution of subducting slabs. In: Inside the subduction factory. Amer Geoph Union 7–22 doi:10.1029/138GM02

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic ARC magmas. Annu Rev Earth Planet Sci 23:251–285

    Google Scholar 

  • Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib Mineral Petrol 139:36–53

    Google Scholar 

  • Pelletier L, Vils F, Kalt A, Gméling K (2008) Li, B and Be contents of harzburgites from the dramala complex (Pindos Ophiolite, Greece): evidence for a MOR-type mantle in a supra-subduction zone environment. J Petrol 49:2043–2080

    Google Scholar 

  • Pe-Piper G, Piper DJW (2002) The igneous rocks of Greece. Borntraeger, Stuttgart, pp 1–645

    Google Scholar 

  • Pe-Piper G, Tsikouras B, Hatzipanagiotou K (2004) Evolution of boninites and island-arc tholeiites in the Pindos Ophiolite, Greece. Geol Mag 141:455–469

    Google Scholar 

  • Perraki M, Hoinkes G, Mposkos E, Thoeni M (2003) Early Cretaceous and Tertiary metamorphic events of the Pelagonian Zone in the E. Thessaly area, Greece. Geophys Res Abstracts 5:04438

    Google Scholar 

  • Pinsent RH, Hirst DM (1977) The metamorphism of the Blue River ultramafic body, Cassiar, British Columbia, Canada. J Petrol 18:567–594

    Google Scholar 

  • Pomonis P, Tsikouras B, Hatzipanagiotou K (2007) Petrogenetic evolution of the Koziakas ophiolite complex (W. Thessaly, Greece). Mineral Petrol 89:77–111

    Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. In: Putirka K, Tepley F (eds) Minerals, inclusions and volcanic processes, reviews in mineralogy and geochemistry. Mineral Soc Amer 69:61–120

  • Rampone E, Piccardo GB (2000) The ophiolite-oceanic lithosphere analogue: new insights from the Northern Apennines (Italy). In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: New insights from field studies and ocean drilling program. Geol Soc Amer Bull 349:21–34

  • Rasse P (1974) Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism. Contrib Mineral Petrol 45:231–236

    Google Scholar 

  • Rassios Α (1990) Geology and copper mineralization of the Vrinera area, east Othris ophiolite, Greece. Ofioliti 15:287–304

    Google Scholar 

  • Renner R (1989) Cooling and crystallisation of komatiite flows from Zimbabwe. Ph.D. thesis, University of Cambridge, pp 1–162

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Google Scholar 

  • Robertson AHF (2002) Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 65:1–67

    Google Scholar 

  • Robertson AHF (2004) Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions. Earth Sci Rev 66:331–387

    Google Scholar 

  • Robertson AHF (2012) Late Palaeozoic-Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. Inter Geol Rev 54:373–454

    Google Scholar 

  • Robertson AHF, Clift PD, Degnan PJ, Jones G (1991) Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeogr Palaeoclim Palaeoeco 87:289–343

    Google Scholar 

  • Robertson AHF, Dixon JE, Brown S, Collins A, Morris A, Pickett E, Sharp I, Ustaomer T (1996) Alternative tectonic models for the Late Paleozoic: Early Tertiary development of Tethys in the Eastern Mediterranean Region. Geol Soc London Spec Publ 105:239–263

    Google Scholar 

  • Ross JV, Zimmerman J (1996) Comparison of evolution and tectonic significance of the Pindos and Vourinos ophiolite suites, northern Greece. Tectonophysics 256:1–15

    Google Scholar 

  • Saccani E, Photiades A (2004) Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting. Lithos 73:229–253

    Google Scholar 

  • Saccani E, Photiades A (2005) Petrogenesis and tectono-magmatic significance of volcanic and subvolcanic rocks in the Albanide-Hellenide ophiolitic mélanges. Island Arc 14(4):494–516

    Google Scholar 

  • Saccani E, Photiades A, Beccaluva L (2008) Petrogenesis and tectonic significance of IAT magma-types in the Hellenide ophiolites as deduced from the Rhodiani ophiolites (Pelagonian zone, Greece). Lithos 104:71–84

    Google Scholar 

  • Sharp IR, Robertson AHF (2006) Tectonic-sedimentary evolution of the western margin of the Mesozoic Vardar Ocean: evidence from the Pelagonian and Almopias zones, northern Greece. Geol Soc London Spec Publ 260:373–412

    Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Google Scholar 

  • Shimizu H, Sangen K, Masuda A (1982) Experimental study on rare-earth element partitioning in olivine and clinopyroxene formed at 10 and 20 kb for basaltic systems. Geochem J 16:107–117

    Google Scholar 

  • Smith AG (1979) Othris, Pindos and Vourinos ophiolites and the Pelagonian zone. Institute of Geological Mining Research, Athens, Greece. In: 6th Colloquium on the geology of the Aegean region 3:1369–1374

  • Smith AG (1993) Tectonic significance of the Hellenic-Dinaric ophiolites. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geol Soc Spl Publ 76:213–243

  • Smith AG, Rassios A (2003) The evolution of ideas for the origin and emplacement of the western Hellenic ophiolites, In: Dilek Y, Newcomb S (eds) Ophiolite concept and the evolution of geological thought. Geol Soc Amer Spec Pap 373:337–350

  • Smith AG, Hynes AJ, Menzies M, Nisbet EG, Price I, Welland MJ, Ferrière J (1975) The stratigraphy of the Othris Mountains, eastern central Greece: a deformed Mesozoic continental margin sequence. Eclogue Geol Helv 68:463–481

    Google Scholar 

  • Snow JE, Dick HJB (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochim et Cosmochim Acta 59:4219–4235

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineral. Soc. Am. Mon. Ser.,Washington, DC, pp 1–799

  • Stampfli G, Vavassis I, De Bono A, Rosselet F, Matti B, Bellini M (2003) Remnants of the Paleotethys oceanic suture-zone in the western Tethys area. Bolletino della Societa Geologica Italiana Special 2:1–23

    Google Scholar 

  • Streckeisen AL (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33

    Google Scholar 

  • Tribuzio R, Tiepolo M, Vannucci R, Bottazzi P (1999) Trace element distribution within olivine-bearing gabbros from the Northern Apennine ophiolites (Italy): evidence for post-cumulus crystallization in MOR-type gabbroic rocks. Contrib Mineral Petrol 134:123–133

    Google Scholar 

  • Welland MJP (1972) The stratigraphy and structure of part of the eastern Ohris mountains, Greece. PhD Dissertation. Cambridge Univ, pp 1–156

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Google Scholar 

  • Whattam SA, Stern RJ (2011) The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs and subduction initiation. Contrib Mineral Petrol 162:1031–1045

    Google Scholar 

  • Wicks FJ, Plant AG (1979) Electron-microprobe and x-ray-microbeam studies of serpentine textures. Can Mineral 17:785–830

    Google Scholar 

  • Witt-Eickschen GE, Seck HA (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. Contrib Mineral Petrol 106:431–439

    Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493-571

    Google Scholar 

Download references

Acknowledgments

We would like to express our sincerest thanks to Prof. Nikolay Bonev, to an anonymous reviewer and to the Editor in Chief Prof. Wolf-Christian Dullo for their constructive reviews, suggestions and critical comments, which significantly helped us to improve this paper. We gratefully acknowledge Prof. Theodoros Ntaflos (University of Vienna) for assisting with the use of electron microprobe facility and for beneficial discussions. We would like to express our appreciation to SARG (University of Athens) for covering part of field work expenses. Panagiotis A. Chrisanthopoulos (alumnus of Drexel University, PA, USA) is also acknowledged for aiding to improve the English text in the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Koutsovitis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magganas, A., Koutsovitis, P. Composition, melting and evolution of the upper mantle beneath the Jurassic Pindos ocean inferred by ophiolitic ultramafic rocks in East Othris, Greece. Int J Earth Sci (Geol Rundsch) 104, 1185–1207 (2015). https://doi.org/10.1007/s00531-014-1137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1137-z

Keywords

Navigation