Skip to main content
Log in

Transfer of olivine crystallographic orientation through a cycle of serpentinisation and dehydration

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Our ability to decipher the mechanisms behind metamorphic transformation processes depends in a major way on the extent to which crystallographic and microstructural information is transferred from one stage to another. Within the Leka Ophiolite Complex in the Central Norwegian Caledonides, prograde olivine veins that formed by dehydration of serpentinite veins in dunites exhibit a characteristic distribution of microstructures: The outer part of the veins comprises coarse-grained olivine that forms an unusual, brick-like microstructure. The inner part of the veins, surrounding a central fault, is composed of fine-grained olivine. Where the fault movement included a dilational component, optically clear, equant olivine occurs in the centre. Electron backscatter diffraction mapping reveals that the vein olivine has inherited its crystallographic preferred orientation (CPO) from the olivine in the porphyroclastic host rock; however, misorientation is weaker and associated to different rotation axes. We propose that prograde olivine grew epitaxially on relics of mantle olivine and thereby acquired its CPO. Growth towards pre-existing microfractures along which serpentinisation had occurred led to straight grain boundaries and a brick-like microstructure in the veins. When dehydration embrittlement induced slip, a strong strain localisation on discrete fault planes prevented distortion of the CPO due to cataclastic deformation; grain size reduction did not significantly modify the olivine CPO. This illustrates how a CPO can be preserved though an entire metamorphic cycle, including hydration, dehydration, and deformation processes, and that the CPO and the microstructures (e.g. grain shape) of one phase do not necessarily record the same event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX—free and open source software toolbox. Solid State Phenom 160:63–68. doi:10.4028/www.scientific.net/SSP.160.63

    Article  Google Scholar 

  • Bachmann F, Hielscher R, Schaeben H (2011) Grain detection from 2d and 3d EBSD data—specification of the MTEX algorithm. Ultramicroscopy 111(12):1720–1733. doi:10.1016/j.ultramic.2011.08.002

    Article  Google Scholar 

  • Bjerga A, Konopásek J, Pedersen RB (2015) Talc–carbonate alteration of ultramafic rocks within the Leka Ophiolite Complex, Central Norway. Lithos 227:21–36. doi:10.1016/j.lithos.2015.03.016

    Article  Google Scholar 

  • Bons PD, Elburg MA, Gomez-Rivas E (2012) A review of the formation of tectonic veins and their microstructures. J Struct Geol 43:33–62. doi:10.1016/j.jsg.2012.07.005

    Article  Google Scholar 

  • Boudier F, Baronnet A, Mainprice D (2010) Serpentine mineral replacements of natural olivine and their seismic implications: oceanic lizardite versus subduction-related antigorite. J Petrol 51(1–2):495–512. doi:10.1093/petrology/egp049

    Article  Google Scholar 

  • Boullier AM, Nicolas A (1975) Classification of textures and fabrics of peridotite xenoliths from South African kimberlites. Phys Chem Earth 9:467–475. doi:10.1016/0079-1946(75)90034-8

    Article  Google Scholar 

  • Bunge HJ (1982) Texture analysis in materials science: mathematical methods. Butterworths, London. doi:10.13140/RG.2.1.1721.1041

    Google Scholar 

  • Carter NL, Ave’Lallemant HG (1970) High temperature flow of dunite and peridotite. Geol Soc Am Bull 81:2181–2202. doi:10.1130/0016-7606(1970)81[2181:HTFODA]2.0.CO;2

  • Debret B, Andreani M, Godard M, Nicollet C, Schwartz S, Lafay R (2013a) Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: a LA-ICPMS study of the Lanzo ultramafic massif (Western Alps). Chem Geol 357:117–133. doi:10.1016/j.chemgeo.2013.08.025

    Article  Google Scholar 

  • Debret B, Nicollet C, Andreani M, Schwartz S, Godard M (2013b) Three steps of serpentinization in an eclogitized oceanic serpentinization front (Lanzo Massif–Western Alps). J Metamorph Geol 31(2):165–186. doi:10.1111/jmg.12008

    Article  Google Scholar 

  • Deschamps F, Godard M, Guillot S, Hattori K (2013) Geochemistry of subduction zone serpentinites: a review. Lithos 178:96–127. doi:10.1016/j.lithos.2013.05.019

    Article  Google Scholar 

  • Drury MR, van Roermund HLM (1989) Fluid Assisted Recrystallization in Upper Mantle Peridotite Xenoliths from Kimberlites. J Petrol 30(1):133–152. doi:10.1093/petrology/30.1.133

    Article  Google Scholar 

  • Dungan MA (1977) Metastability in serpentine-olivine equilibria. Am Miner 62(9–10):1018–1029

    Google Scholar 

  • Dunkel KG, Austrheim H, Renard F, Cordonnier B, Jamtveit B (2017) Localized slip controlled by dehydration embrittlement of partly serpentinized dunites, Leka Ophiolite Complex, Norway. Earth Planet Sci Lett 463:277–285. doi:10.1016/j.epsl.2017.01.047

    Article  Google Scholar 

  • Dunning GR, Pedersen RB (1988) U/Pb ages of ophiolites and arc-related plutons of the Norwegian Caledonides: implications for the development of Iapetus. Contrib Mineral Petrol 98(1):13–23. doi:10.1007/BF00371904

    Article  Google Scholar 

  • Fisher DM, Brantley SL (1992) Models of quartz overgrowth and vein formation: deformation and episodic fluid flow in an ancient subduction zone. J Geophys Res Solid Earth 97:20043–20061. doi:10.1029/92JB01582

    Article  Google Scholar 

  • Furnes H, Pedersen RB, Stillman CJ (1988) The Leka Opholite Complex, central Norwegian Caledonides: field characteristics and geotectonic significance. J Geol Soc 145(3):401–412. doi:10.1144/gsjgs.145.3.0401

    Article  Google Scholar 

  • Hacker BR, Peacock SM, Abers GA, Holloway SD (2003) Subduction factory 2. Are intermediate‐depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res Solid Earth (1978–2012) 108(B1). doi:10.1029/2001JB001129

  • Healy D, Reddy SM, Timms NE, Gray EM, Brovarone AV (2009) Trench-parallel fast axes of seismic anisotropy due to fluid-filled cracks in subducting slabs. Earth Planet Sci Lett 283(1–4):75–86. doi:10.1016/j.epsl.2009.03.037

    Article  Google Scholar 

  • Hielscher R, Schaeben H (2008) A novel pole figure inversion method: specification of the MTEX algorithm. J Appl Crystallogr 41(6):1024–1037. doi:10.1107/S0021889808030112

    Article  Google Scholar 

  • Hyndman RD, Peacock SM (2003) Serpentinization of the forearc mantle. Earth Planet Sci Lett 212(3–4):417–432. doi:10.1016/S0012-821X(03)00263-2

    Article  Google Scholar 

  • Jabaloy-Sánchez A, Gómez-Pugnaire MT, Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ (2015) Subduction- and exhumation-related structures preserved in metaserpentinites and associated metasediments from the Nevado–Filábride Complex (Betic Cordillera, SE Spain). Tectonophysics 644–645:40–57. doi:10.1016/j.tecto.2014.12.022

    Article  Google Scholar 

  • Jung H, Green Ii HW, Dobrzhinetskaya LF (2004) Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 428(6982):545–549. doi:10.1038/nature02412

    Article  Google Scholar 

  • Jung H, Katayama I, Jiang Z, Hiraga T, Karato S-I (2006) Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421(1):1–22. doi:10.1016/j.tecto.2006.02.011

    Article  Google Scholar 

  • Katayama I, Jung H, S-i Karato (2004) New type of olivine fabric from deformation experiments at modest water content and low stress. Geology 32(12):1045–1048. doi:10.1130/g20805.1

    Article  Google Scholar 

  • Kay RW (1980) Volcanic arc magmas: implications of a melting-mixing model for element recycling in the crust–upper mantle system. J Geol 88(5):497–522

    Article  Google Scholar 

  • Lopez-Sanchez MA (2016) GrainSizeTools script. figshare. doi:10.6084/m9.figshare.1383130

  • Lopez-Sanchez MA, Llana-Fúnez S (2015) An evaluation of different measures of dynamically recrystallized grain size for paleopiezometry or paleowattometry studies. Solid Earth 6:475–495. doi:10.5194/se-6-475-2015

    Article  Google Scholar 

  • Mainprice D, Silver PG (1993) Interpretation of SKS-waves using samples from the subcontinental lithosphere. Phys Earth Planet Inter 78(3):257–280. doi:10.1016/0031-9201(93)90160-B

    Article  Google Scholar 

  • Mainprice D, Bachmann F, Hielscher R, Schaeben H (2014) Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components. Geological Society, London, Special Publications SP409.8v1. doi:10.1144/SP409.8

  • Nicolas A, Christensen NI (1987) Formation of anisotropy in upper mantle peridotites—a review. In: Fuchs K, Froidevaux C (eds) Composition, structure and dynamics of the lithosphere-asthenosphere system. American Geophysical Union, Washington, D. C., pp 111–123. doi:10.1029/GD016p0111

  • Padrón-Navarta JA, Tommasi A, Garrido CJ, Sánchez-Vizcaíno VL, Gómez-Pugnaire MT, Jabaloy A, Vauchez A (2010) Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle. Earth Planet Sci Lett 297(1):271–286. doi:10.1016/j.epsl.2010.06.029

    Article  Google Scholar 

  • Padrón-Navarta JA, Sánchez-Vizcaíno VL, Garrido CJ, Gómez-Pugnaire MT (2011) Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado–Filábride Complex, Southern Spain). J Petrol 52(10):2047–2078. doi:10.1093/petrology/egr03

    Article  Google Scholar 

  • Padrón-Navarta JA, Tommasi A, Garrido C, Mainprice D (2015) On topotaxy and compaction during antigorite and chlorite dehydration: an experimental and natural study. Contrib Miner Petrol 169(4):1–20. doi:10.1007/s00410-015-1129-4

    Article  Google Scholar 

  • Pedersen R-B, Johannesen GM, Boyd R (1993) Stratiform platinum-group element mineralizations in the ultramafic cumulates of the Leka ophiolite complex, central Norway. Econ Geol 88:782–803. doi:10.2113/gsecongeo.88.4.782

    Article  Google Scholar 

  • Plümper O, King HE, Vollmer C, Ramasse Q, Jung H, Austrheim H (2012a) The legacy of crystal-plastic deformation in olivine: high-diffusivity pathways during serpentinization. Contrib Miner Petrol 163(4):701–724. doi:10.1007/s00410-011-0695-3

    Article  Google Scholar 

  • Plümper O, Piazolo S, Austrheim H (2012b) Olivine pseudomorphs after serpentinized orthopyroxene record transient oceanic lithospheric mantle dehydration (Leka Ophiolite Complex, Norway). J Petrol 53(9):1943–1968. doi:10.1093/petrology/egs039

    Article  Google Scholar 

  • Plümper O, John T, Podladchikov YY, Vrijmoed JC, Scambelluri M (2017) Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nat Geosci 10:150–156. doi:10.1038/ngeo2865

    Article  Google Scholar 

  • Raleigh C, Paterson M (1965) Experimental deformation of serpentinite and its tectonic implications. J Geophys Res 70(16):3965–3985. doi:10.1029/JZ070i016p03965

    Article  Google Scholar 

  • Ramsay JG (1980) The crack-seal mechanism of rock deformation. Nature 284(5752):135–139. doi:10.1038/284135a0

    Article  Google Scholar 

  • Rüpke LH, Morgan JP, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223(1–2):17–34. doi:10.1016/j.epsl.2004.04.018

    Article  Google Scholar 

  • Rutter EH, Llana-Fúnez S, Brodie KH (2009) Dehydration and deformation of intact cylinders of serpentinite. J Struct Geol 31(1):29–43. doi:10.1016/j.jsg.2008.09.008

    Article  Google Scholar 

  • Scambelluri M, Strating EH, Piccardo G, Vissers R, Rampone E (1991) Alpine olivine-and titanian clinohumite-bearing assemblages in the Erro-Tobbio peridotite (Voltri Massif, NW Italy). J Metamorph Geol 9(1):79–91. doi:10.1111/j.1525-1314.1991.tb00505.x

    Article  Google Scholar 

  • Shiina T, Nakajima J, Matsuzawa T (2013) Seismic evidence for high pore pressures in the oceanic crust: implications for fluid-related embrittlement. Geophys Res Lett 40(10):2006–2010. doi:10.1002/grl.50468

    Article  Google Scholar 

  • Skemer P, Katayama I, Jiang Z, S-i Karato (2005) The misorientation index: development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics 411(1):157–167. doi:10.1016/j.tecto.2005.08.023

    Article  Google Scholar 

  • Snoke AW, Calk LC (1978) Jackstraw-textured talc-olivine rocks, Preston Peak area, Klamath Mountains, California. Geol Soc Am Bull 89(2):223–230. doi:10.1130/0016-7606(1978)89<223:jtrppa>2.0.co;2

    Article  Google Scholar 

  • Tommasi A, Mainprice D, Canova G, Chastel Y (2000) Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: implications for the upper mantle seismic anisotropy. J Geophys Res Solid Earth (1978–2012) 105(B4):7893–7908. doi:10.1029/1999JB900411

    Article  Google Scholar 

  • Vance JA, Dungan MA (1977) Formation of peridotites by deserpentinization in the Darrington and Sultan areas, Cascade Mountains, Washington. Geol Soc Am Bull 88(10):1497–1508. doi:10.1130/0016-7606(1977)88<1497:fopbdi>2.0.co;2

    Article  Google Scholar 

  • Yamasaki T, Seno T (2003) Double seismic zone and dehydration embrittlement of the subducting slab. J Geophys Res Solid Earth (1978–2012) 108(B4). doi:10.1029/2002JB001918

Download references

Acknowledgements

This project has been supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA-Grant Agreement No. 608001, “ABYSS”, and by the European Union’s Horizon 2020 Research and Innovation Programme under the ERC Advanced Grant Agreement No. 669972, “Disequilibirum Metamorphism” (“DIME”), to BJ. The authors thank Fabrice Barou for assistance with the EBSD data acquisition, Christophe Nevado and Doriane Delmas for the high-quality thin section polishing, and José Alberto Padrón-Navarta and Julien Gasc for helpful discussions. Comments by Luiz Morales and an anonymous reviewer were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina G. Dunkel.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2017_1378_MOESM1_ESM.jpg

O nline Resource 1 Optical micrographs taken with plane polarised (a) and cross-polarised (b) light showing microstructural domains B, C, and D and a displacement of chromite grains in domains C and D (JPEG 3820 kb)

410_2017_1378_MOESM2_ESM.png

Online Resource 2 Olivine grain size distributions for domains A to C. Two-dimensional grain sizes were computed from EBSD data using MTEX and the three-dimensional distributions were calculated with the Saltykov method (as described in Lopez-Sanchez and Llana-Fúnez, 2015) using the GrainSizeTools script by Lopez-Sanchez (2016). The steps in the volume-weighted cumulative distribution at high diameters in domains A and C are caused by isolated porphyroclasts (in A) or relict coarse grains (in C) because the measured areas are relatively small (PNG 219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunkel, K.G., Austrheim, H., Ildefonse, B. et al. Transfer of olivine crystallographic orientation through a cycle of serpentinisation and dehydration. Contrib Mineral Petrol 172, 64 (2017). https://doi.org/10.1007/s00410-017-1378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1378-5

Keywords

Navigation