Skip to main content
Log in

The legacy of crystal-plastic deformation in olivine: high-diffusivity pathways during serpentinization

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Crystal-plastic olivine deformation to produce subgrain boundaries composed of edge dislocations is an inevitable consequence of asthenospheric mantle flow. Although crystal-plastic deformation and serpentinization are spatio-temporally decoupled, we identified compositional readjustments expressed on the micrometric level as a striped Fe-enriched (\( \bar{X}_{\text{Fe}} \) = 0.24 ± 0.02 (zones); 0.12 ± 0.02 (bulk)) or Fe-depleted (\( \bar{X}_{\text{Fe}} \) = 0.10 ± 0.01 (zones); 0.13 ± 0.01 (bulk)) zoning in partly serpentinized olivine grains from two upper mantle sections in Norway. Focused ion beam sample preparation combined with transmission electron microscopy (TEM) and aberration-corrected scanning TEM, enabling atomic-level resolved electron energy-loss spectroscopic line profiling, reveals that every zone is immediately associated with a subgrain boundary. We infer that the zonings are a result of the environmental Fe2+Mg−1 exchange potential during antigorite serpentinization of olivine and the drive toward element exchange equilibrium. This is facilitated by enhanced solid-state diffusion along subgrain boundaries in a system, which otherwise re-equilibrates via dissolution-reprecipitation. Fe enrichment or depletion is controlled by the silica activity imposed on the system by the local olivine/orthopyroxene mass ratio, temperature and the effect of magnetite stability. The Fe-Mg exchange coefficients \( K_{\text{D}}^{{{\text{Atg}}/{\text{Ol}}}} \) between both types of zoning and antigorite display coalescence toward exchange equilibrium. With both types of zoning, Mn is enriched and Ni depleted compared with the unaffected bulk composition. Nanometer-sized, heterogeneously distributed antigorite precipitates along olivine subgrain boundaries suggest that water was able to ingress along them. Crystallographic orientation relationships gained via electron backscatter diffraction between olivine grain domains and different serpentine vein generations support the hypothesis that serpentinization was initiated along olivine subgrain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Thereafter, diffusion will always refer to solid-state diffusion unless otherwise stated.

References

  • Ando JI, Shibata Y, Okajima Y, Kanagawa K, Furusho M, Tomioka N (2001) Striped iron zoning of olivine induced by dislocation creep in deformed peridotites. Nature 414(6866):893–895. doi:10.1038/414893a

    Article  Google Scholar 

  • Ando JI, Tomioka N, Matsubara K, Inoue T, Irifune T (2006) Mechanism of the olivine-ringwoodite transformation in the presence of aqueous fluid. Phys Chem Miner 33(6):377–382. doi:10.1007/s00269-006-0082-1

    Article  Google Scholar 

  • Arredondo M, Ramasse QM, Weyland M, Mahjoub R, Vrejoiu I, Hesse D, Browning ND, Alexe M, Munroe P, Nagarajan V (2010) Direct evidence for cation non-stoichiometry and Cottrell atmospheres around dislocation cores in functional oxide interfaces. Adv Mater 22(22):2430–2434. doi:10.1002/adma.200903631

    Article  Google Scholar 

  • Austrheim H, Prestvik T (2008) Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, North-central Norway. Lithos 104(1–4):177–198. doi:10.1016/j.lithos.2007.12.006

    Article  Google Scholar 

  • Bach W, Frueh-Green GL (2010) Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6(3):173–178. doi:10.2113/gselements.6.3.173

    Article  Google Scholar 

  • Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15° N (ODP Leg 209, Site 1274). Geophys Res Lett 33(13). doi:10.1029/2006GL025681

  • Bakker RJ, Jansen JB (1994) A mechanism for preferential H2O leakage from fluid inclusions in quartz, based on TEM observations. Contrib Mineral Petrol 116(1–2):7–20. doi:10.1007/BF00310686

    Article  Google Scholar 

  • Baxter EF (2003) Natural constraints on metamorphic reaction rates. Geol Soc Spec Publ 220:183–202. doi:10.1144/GSL.SP.2003.220.01.11

    Article  Google Scholar 

  • Blacic JD (1972) Effects of water in the experimental deformation of olivine. In: Heard HC, Borg IY, Carter NL, Raleigh CB (eds) Flow and fracture of rocks, vol. American Geophysical Union, pp 109–115

  • Boudier F, Baronnet A, Mainprice D (2010) Serpentine mineral replacements of natural olivine and their seismic implications: oceanic lizardite versus subduction-related antigorite. J Petrol 51(1–2):495–512. doi:10.1093/petrology/egp049

    Article  Google Scholar 

  • Boullier AM, Nicolas A (1970) Classification of textures and fabrics of peridotite xenoliths from south African kimberlites. Phys Chem Earth 9:467–475. doi:10.1016/0079-1946(75)90034-8

    Article  Google Scholar 

  • Buban JP, Ramasse Q, Gipson B, Browning ND, Stahlberg H (2010) High-resolution low-dose scanning transmission electron microscopy. J Electron Microsc 59(2):103–112. doi:10.1093/jmicro/dfp052

    Article  Google Scholar 

  • Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks. Springer, Berlin

    Google Scholar 

  • Bucher-Nurminen K (1991) Mantle fragments in the Scandinavian Caledonides. Tectonophysics 190(2–4):173–192. doi:10.1016/0040-1951(91)90429-V

    Article  Google Scholar 

  • Carter NL, Avè Lallemant HG (1970) High temperature flow of dunite and peridotite. Geol Soc Am Bull 81:2181–2202. doi:10.1130/0016-7606

    Article  Google Scholar 

  • Chopra PN, Paterson MS (1984) The role of water in the deformation of dunite. J Geophys Res 89(NB9):7861–7876. doi:10.1029/JB089iB09p07861

    Google Scholar 

  • Coleman RG, Keith TE (1971) Chemical study of serpentinization—Burro Mountain, California. J Petrol 12(2):311–328. doi:10.1093/petrology/12.2.311

    Google Scholar 

  • Cottrell AH, Bilby BA (1949) Dislocation theory of yielding and strain ageing of iron. P Phys Soc Lond A 62(349):49–62. doi:10.1088/0370-1298/62/1/308

    Article  Google Scholar 

  • Crerar DA, Barnes HL (1974) Deposition of deep-sea manganese nodules. Geochim Cosmochim Ac 38(2):279–300. doi:10.1016/0016-7037(74)90111-2

    Article  Google Scholar 

  • Dawson P, Hadfield CD, Wilkinson GR (1973) Polarized Infrared and Raman-Spectra of Mg(OH)2 and Ca(OH)2. J Phys Chem Solids 34(7):1217–1225. doi:10.1016/S0022-3697(73)80212-4

    Article  Google Scholar 

  • de Leeuw NH, Parker SC, Catlow CRA, Price GD (2000) Modelling the effect of water on the surface structure and stability of forsterite. Phys Chem Miner 27(5):332–341. doi:10.1007/s002690050262

    Article  Google Scholar 

  • Demouchy S (2010) Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet Sci Lett 295(1–2):305–313. doi:10.1016/j.epsl.2010.04.019

    Article  Google Scholar 

  • Doelsch E, Rose J, Masion A, Bottero JY, Nahon D, Bertsch PM (2002) Hydrolysis of iron(II) chloride under anoxic conditions and influence of SiO4 ligands. Langmuir 18(11):4292–4299. doi:10.1021/La011605r

    Article  Google Scholar 

  • Dohmen R, Chakraborty S (2007) Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Miner 34(6):409–430. doi:10.1007/s00269-007-0158-6

    Article  Google Scholar 

  • Dohmen R, Milke R (2010) Diffusion in polycrystalline materials: grain boundaries, mathematical models, and experimental data. In: Zhang Y, Cherniak DJ (eds) Reviews in mineralogy & geochemistry, vol 72. pp 921–970. doi:10.2138/rmg.2010.72.21

  • Escartin J, Hirth G, Evans B (1997) Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges. Earth Planet Sci Lett 151(3–4):181–189. doi:10.1016/S0012-821X(97)81847-X

    Article  Google Scholar 

  • Escartin J, Hirth G, Evans B (2001) Strength of slightly serpentinized peridotites: implications for the tectonics of oceanic lithosphere. Geology 29(11):1023–1026. doi:10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2

    Article  Google Scholar 

  • Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46(6):479–506. doi:10.2747/0020-6814.46.6.479

    Article  Google Scholar 

  • Evans BW (2008) Control of the products of serpentinization by the Fe2+Mg−1 exchange potential of olivine and orthopyroxene. J Petrol 49(10):1873–1887. doi:10.1093/petrology/egn050

    Article  Google Scholar 

  • Evans BW (2010) Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life(?). Geology 38(10):879–882. doi:10.1130/G31158.1

    Article  Google Scholar 

  • Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48(7):1351–1368. doi:10.1093/petrology/egm021

    Article  Google Scholar 

  • Furnes H, Pedersen RB, Stillman CJ (1988) The Leka Ophiolite complex, central Norwegian Caledonides—field characteristics and geotectonic significance. J Geol Soc Lond 145:401–412. doi:10.1144/gsjgs.145.3.0401

    Article  Google Scholar 

  • Hacker BR, Christie JM (1991) Observational evidence for a possible new diffusion path. Science 251(4989):67–70. doi:10.1126/science.251.4989.67

    Article  Google Scholar 

  • Harlov DE, Wirth R, Forster HJ (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150(3):268–286. doi:10.1007/s00410-005-0017-8

    Article  Google Scholar 

  • Heinemann S, Wirth R, Gottschalk M, Dresen G (2005) Synthetic [100] tilt grain boundaries in forsterite: 9.9 to 21.5 degrees. Phys Chem Miner 32(4):229–240. doi:10.1007/s00269-005-0448-9

    Google Scholar 

  • Hier-Majumder S, Anderson IM, Kohlstedt DL (2005) Influence of protons on Fe–Mg interdiffusion in olivine. J Geophys Res-Sol Ea 110(B2). doi:10.1029/2004JB003292

  • Holness MB (2006) Melt-solid dihedral angles of common minerals in natural rocks. J Petrol 47(4):791–800. doi:10.1093/petrology/egi094

    Article  Google Scholar 

  • Holzapfel C, Chakraborty S, Rubie DC, Frost DJ (2007) Effect of pressure on Fe–Mg, Ni and Mn diffusion in (FexMg1-x)2SiO4 olivine. Phys Earth Planet In 162(3–4):186–198. doi:10.1016/j.pepi.2007.04.009

    Article  Google Scholar 

  • Huang J, Meyer M, Pontikis V (1989) Is pipe diffusion in metals vacancy controlled—a molecular-dynamics study of an edge dislocation in copper. Phys Rev Lett 63(6):628–631. doi:10.1103/PhysRevLett.63.628

    Article  Google Scholar 

  • Hulme SM, Wheat CG, Fryer P, Mottl MJ (2010) Pore water chemistry of the Mariana serpentinite mud volcanoes: a window to the seismogenic zone. Geochem Geophy Geosy 11. doi:10.1029/2009GC002674

  • Iyer K, Austrheim H, John T, Jamtveit B (2008a) Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite complex, Norway. Chem Geol 249(1–2):66–90. doi:10.1016/j.chemgeo.2007.12.005

    Article  Google Scholar 

  • Iyer K, Jamtveit B, Mathiesen J, Malthe-Sorenssen A, Feder J (2008b) Reaction-assisted hierarchical fracturing during serpentinization. Earth Planet Sci Lett 267(3–4):503–516. doi:10.1016/j.epsl.2007.11.060

    Article  Google Scholar 

  • Jamtveit B, Austrheim H (2010) Metamorphism: the role of fluids. Elements 6(3):153–158. doi:10.2113/gselements.6.3.153

    Article  Google Scholar 

  • Jamtveit B, Malthe-Sorenssen A, Kostenko O (2008) Reaction enhanced permeability during retrogressive metamorphism. Earth Planet Sci Lett 267(3–4):620–627. doi:10.1016/j.epsl.2007.12.016

    Article  Google Scholar 

  • Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293(5534):1460–1463. doi:10.1126/science.1062235

    Article  Google Scholar 

  • Keller LM, Abart R, Wirth R, Schmid DW, Kunze K (2006) Enhanced mass transfer through short-circuit diffusion: growth of garnet reaction rims at eclogite facies conditions. Am Mineral 91(7):1024–1038. doi:10.2138/Am.2006.2068

    Article  Google Scholar 

  • Kerschhofer L, Sharp TG, Rubie DC (1996) Intracrystalline transformation of olivine to wadsleyite and ringwoodite under subduction zone conditions. Science 274(5284):79–81. doi:10.1126/science.274.5284.79

    Article  Google Scholar 

  • Kilaas R (1998) Optimal and near-optimal filters in high-resolution electron microscopy. J Microsc-Oxford 190:45–51. doi:10.1046/j.1365-2818.1998.3070861.x

    Article  Google Scholar 

  • King HE, Plumper O, Putnis A (2010) Effect of secondary phase formation on the carbonation of olivine. Environ Sci Technol 44(16):6503–6509. doi:10.1021/Es9038193

    Article  Google Scholar 

  • Kitamura M, Matsuda H, Morimoto N (1986) Direct observation of the cottrell atmosphere in olivine. Proc Jpn Acad Ser B-Phys Biol Sci 62(5):149–152

    Article  Google Scholar 

  • Klein F, Bach WG (2009) Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. J Petrol 50(1):37–59. doi:10.1093/petrology/egn071

    Article  Google Scholar 

  • Klein F, Bach W, Jöns N, McCollom T, Moskowitz B, Berquo T (2009) Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15 degrees N on the Mid-Atlantic Ridge. Geochim Cosmochim Ac 73(22):6868–6893. doi:10.1016/j.gca.2009.08.021

    Article  Google Scholar 

  • Klinger L, Rabkin E (1999) Beyond the Fisher model of grain boundary diffusion: effect of structural inhomogeneity in the bulk. Acta Mater 47(3):725–734. doi:10.1016/S1359-6454(98)00420-0

    Article  Google Scholar 

  • Konrad-Schmolke M, O’Brien PJ, Heidelbach F (2007) Compositional re-equilibration of garnet: the importance of sub-grain boundaries. Eur J Mineral 19(4):431–438. doi:10.1127/0935-1221/2007/0019-1749

    Article  Google Scholar 

  • Kramar N, Cosca MA, Buffat PA, Baumgartner LP (2003) Stacking fault-enhanced argon diffusion in naturally deformed muscovite. In: Vance D, Muller W, Villa IM (eds) Geol Soc Spec Publ, vol 220. pp 249–260

  • Kubo T, Ohtani E, Kato T, Shinmei T, Fujino K (1998) Effects of water on the alpha-beta transformation kinetics in San Carlos Olivine. Science 281(5373):85–87. doi:10.1126/science.281.5373.85

    Article  Google Scholar 

  • Kunugiza K (1982) Formation of zoning of olivine with progressive metamorphism of serpentinite—an example from the Ryumon peridotite body of Sanbagawa metamorphic belt, Kii peninsula. J Jpn Ass Min Pet Econ Geol 77:157–170

    Article  Google Scholar 

  • Lee JKW (1995) Multipath diffusion in geochronology. Contrib Mineral Petrol 120(1):60–82. doi:10.1007/BF00311008

    Article  Google Scholar 

  • Legros M, Dehm G, Arzt E, Balk TJ (2008) Observation of giant diffusivity along dislocation cores. Science 319(5870):1646–1649. doi:10.1126/science.1151771

    Article  Google Scholar 

  • Love GR (1964) Dislocation pipe diffusion. Acta Metall Mater 12(6):731–737. doi:10.1016/0001-6160(64)90220-2

    Article  Google Scholar 

  • Mackwell SJ, Kohlstedt DL (1990) Diffusion of hydrogen in olivine—implications for water in the mantle. J Geophys Res-Solid 95(B4):5079–5088. doi:10.1029/JB095iB04p05079

    Google Scholar 

  • Mark DF, Kelley SP, Lee MR, Parnell J, Sherlock SC, Brown DJ (2008) Ar–Ar dating of authigenic K-feldspar: quantitative modelling of radiogenic argon-loss through subgrain boundary networks. Geochim Cosmochim Ac 72(11):2695–2710. doi:10.1016/j.gca.2008.03.018

    Article  Google Scholar 

  • Martin B, Fyfe WS (1970) Some experimental and theoretical observations on kinetics of hydration reactions with particular reference to serpentinization. Chem Geol 6(3):185–202. doi:10.1016/0009-2541(70)90018-5

    Article  Google Scholar 

  • Mehrer H (2007) Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Springer, Berlin

    Google Scholar 

  • Mei S, Kohlstedt DL (2000) Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res-Sol Ea 105(B9):21471–21481. doi:10.1029/2000JB900180

    Google Scholar 

  • Moore AC, Hultin I (1980) Petrology, mineralogy, and origin of the Feragen ultramafic body, Sør-Trondelag, Norway. Norsk Geol Tidsskr 60(4):235–254

    Google Scholar 

  • Murata K, Maekawa H, Ishii K, Mohammad YO, Yokose H (2009) Iron-rich stripe patterns in olivines of serpentinized peridotites from Mariana forearc seamounts, western Pacific. J Miner Petrol Sci 104(3):199–203. doi:10.2465/jmps.081022h

    Article  Google Scholar 

  • Nicolas A, Christensen NI (1987) Formation of anisotropy in upper mantle peridotite: a review. In: Fuchs K, Foridevaux C (eds) Composition, structure and dynamics of the lithosphere-asthenosphere system, vol. American Geophysical Union, pp 111–123

  • Pattison DRM (1994) Are reversed Fe–Mg exchange and solid-solution experiments really reversed. Am Mineral 79(9–10):938–950

    Google Scholar 

  • Pattison DRM, Newton RC (1989) Reversed experimental calibration of the garnet-clinopyroxene Fe–Mg exchange thermometer. Contrib Mineral Petrol 101(1):87–103. doi:10.1007/BF00387203

    Article  Google Scholar 

  • Petry C, Chakraborty S, Palme H (2004) Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim Cosmochim Ac 68(20):4179–4188. doi:10.1016/j.gca.2004.02.024

    Article  Google Scholar 

  • Pokrovski GS, Schott J, Garges F, Hazemann JL (2003) Iron(III)-silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy. Geochim Cosmochim Ac 67(19):3559–3573. doi:10.1016/S0016-7037(03)00160-1

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1984) A new model for quantitative X-ray-microanalysis .1. Application to the analysis of homogeneous samples. Rech Aerospatiale (3):167–192

  • Prestvik T (1972) Alpine-type mafic and ultramafic rocks of Leka, Nord-Trøndelag. Nor Geol Unders 273:23–34

    Google Scholar 

  • Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Thermodynamics and kinetics of water-rock interaction. In: Oelkers EH, Schott J (eds) Reviews in mineralogy and geochemistry, vol 70, pp 87–124. doi:10.2138/rmg.2009.70.3

  • Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10(1–2):254–269. doi:10.1111/j.1468-8123.2010.00285.x

    Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425(6956):367–373. doi:10.1038/Nature01961

    Article  Google Scholar 

  • Raufaste C, Jamtveit B, John T, Meakin P, Dysthe DK (2011) The mechanism of porosity formation during solvent-mediated phase transformations. P Roy Soc-Math Phy 467(2129):1408–1426. doi:10.1098/rspa.2010.0469

    Google Scholar 

  • Reddy SM, Timms NE, Trimby P, Kinny PD, Buchan C, Blake K (2006) Crystal-plastic deformation of zircon: a defect in the assumption of chemical robustness. Geology 34(4):257–260. doi:10.1130/G22110.1

    Article  Google Scholar 

  • Rinaudo C, Gastaldi D, Belluso E (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can Mineral 41:883–890. doi:10.2113/gscanmin.41.4.883

    Article  Google Scholar 

  • Sader K, Schaffer B, Vaughan G, Brydson R, Brown A, Bleloch A (2010) Smart acquisition EELS. Ultramicroscopy 110(8):998–1003. doi:10.1016/j.ultramic.2010.01.012

    Article  Google Scholar 

  • Shervais JW, Kolesar P, Andreasen K (2005) A field and chemical study of serpentinization—Stonyford, California: chemical flux and mass balance. Int Geol Rev 47(1):1–23. doi:10.2747/0020-6814.47.1.1

    Article  Google Scholar 

  • Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK (2004) H2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci USA 101(35):12818–12823. doi:10.1073/pnas.0405289101

    Article  Google Scholar 

  • Snow JE, Dick HJB (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochim Cosmochim Ac 59(20):4219–4235. doi:10.1016/0016-7037(95)00239-V

    Article  Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph, Washington DC

    Google Scholar 

  • Swain MV, Atkinson BK (1978) Fracture surface-energy of olivine. Pure Appl Geophys 116(4–5):866–872. doi:10.1007/BF00876542

    Article  Google Scholar 

  • Takahashi E (1978) Partitioning of Ni2+, Co2+, Fe2+, Mn2+ and Mg2+ between olivine and silicate melts—compositional dependence of partition-coefficient. Geochim Cosmochim Ac 42(12):1829–1844. doi:10.1016/0016-7037(78)90238-7

    Article  Google Scholar 

  • Titus SJ, Fossen H, Pedersen RB, Vigneresse JL, Tikoff B (2002) Pull-apart formation and strike-slip partitioning in an obliquely divergent setting, Leka Ophiolite, Norway. Tectonophysics 354(1–2):101–119. doi:10.1016/S0040-1951(02)00293-7

    Article  Google Scholar 

  • Toft PB, Arkanihamed J, Haggerty SE (1990) The effects of serpentinization on density and magnetic-susceptibility—a petrophysical model. Phys Earth Planet In 65(1–2):137–157. doi:10.1016/0031-9201(90)90082-9

    Article  Google Scholar 

  • Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schist in Bergell Tonalite Aureole (Italy). Am J Sci 272(5):423–437. doi:10.2475/ajs.272.5.423

    Article  Google Scholar 

  • Trommsdorff V, Evans BW (1974) Alpine metamorphism of peridotitic rocks. Schweiz Mineral Petrogr Mitt 54:333–354

    Google Scholar 

  • Viti C, Mellini M, Rumori C (2005) Exsolution and hydration of pyroxenes from partially serpentinized harzburgites. Mineral Mag 69(4):491–507. doi:10.1180/0026461056940265

    Article  Google Scholar 

  • Watson EB, Baxter EF (2007) Diffusion in solid-earth systems. Earth Planet Sci Lett 253(3–4):307–327. doi:10.1016/j.epsl.2006.11.015

    Article  Google Scholar 

  • Watson EB, Brenan JM (1987) Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2–H2O fluids and their implications for fluid transport, host-rock physical-properties, and fluid inclusion formation. Earth Planet Sci Lett 85(4):497–515. doi:10.1016/0012-821X(87)90144-0

  • Watson EB, Dohmen R (2010) Non-traditional and emerging methods for characterizing diffusion in minerals and mineral aggregates. In: Zhang Y, Cherniak DJ (eds) Reviews in mineralogy & geochemistry, vol 72. pp 921–970. doi:10.2138/rmg.2010.72.3

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185–187. doi:10.2138/Am.2010.3371

    Article  Google Scholar 

  • Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16(6):863–876. doi:10.1127/0935-1221/2004/0016-0863

    Article  Google Scholar 

  • Wirth R (2009) Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261(3–4):217–229. doi:10.1016/j.chemgeo.2008.05.019

    Article  Google Scholar 

  • Wunder B, Wirth R, Gottschalk M (2001) Antigorite: pressure and temperature dependence of polysomatism and water content. Eur J Mineral 13(3):485–495. doi:10.1127/0935-1221/2001/0013-0485

    Article  Google Scholar 

  • Yund RA (1997) Rates of grain boundary diffusion through enstatite and forsterite reaction rims. Contrib Mineral Petrol 126(3):224–236. doi:10.1007/s004100050246

    Article  Google Scholar 

  • Yund RA, Smith BM, Tullis J (1981) Dislocation-assisted diffusion of oxygen in albite. Phys Chem Miner 7(4):185–189. doi:10.1007/BF00307264

    Article  Google Scholar 

  • Zhang F, Walker AM, Wright K, Gale JD (2010) Defects and dislocations in MgO: atomic scale models of impurity segregation and fast pipe diffusion. J Mater Chem 20(46):10445–10451. doi:10.1039/C0JM01550D

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the European Commission through the Marie Curie Initial Training Network Delta-Min (Mechanisms of Mineral Replacement Reactions) contract no. PITN-GA-2008-215360. We thank A. Beinlich, P. Meakin, A. Putnis, J. Mathiesen, J. Semprich, J. Hövelmann and B. Jamtveit for numerous discussions and stimulating thoughts about the topic. The manuscript benefited from valuable comments and suggestions given by the reviewers B.W. Evans and F. Klein. We thank K. Iyer for providing his thin section collection. M. Erambert and Ø. Prytz are thanked for technical assistance. Anja Schreiber at GFZ Potsdam, Germany, is thanked for FIB cut preparation. O. Plümper acknowledges his scientific mobility opportunities at the Institut für Mineralogie, University of Münster, Germany. H. Jung was supported by the Mid-career Research Program through NRF grant funded by the MEST (No. 3345-20100013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Plümper.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plümper, O., King, H.E., Vollmer, C. et al. The legacy of crystal-plastic deformation in olivine: high-diffusivity pathways during serpentinization. Contrib Mineral Petrol 163, 701–724 (2012). https://doi.org/10.1007/s00410-011-0695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0695-3

Keywords

Navigation