Advertisement

Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa

  • Rohit H. Nandedkar
  • Peter Ulmer
  • Othmar Müntener
Original Paper

Abstract

Differentiation of mantle-derived, hydrous, basaltic magmas is a fundamental process to produce evolved intermediate to SiO2-rich magmas that form the bulk of the middle to shallow continental and island arc crust. This study reports the results of fractional crystallization experiments conducted in a piston cylinder apparatus at 0.7 GPa for hydrous, calc-alkaline to arc tholeiitic magmas. Fractional crystallization was approached by synthesis of starting materials representing the liquid composition of the previous, higher temperature experiment. Temperatures ranged from near-liquidus at 1,170 °C to near-solidus conditions at 700 °C. H2O contents varied from 3.0 to more than 10 wt%. The liquid line of descent covers the entire compositional range from olivine–tholeiite (1,170 °C) to high-silica rhyolite (700 °C) and evolves from metaluminous to peraluminous compositions. The following crystallization sequence has been established: olivine → clinopyroxene → plagioclase, spinel → orthopyroxene, amphibole, titanomagnetite → apatite → quartz, biotite. Anorthite-rich plagioclase and spinel are responsible for a marked increase in SiO2-content (from 51 to 53 wt%) at 1,040 °C. At lower temperatures, fractionation of amphibole, plagioclase and Fe–Ti oxide over a temperature interval of 280 °C drives the SiO2 content continuously from 53 to 78 wt%. Largest crystallization steps were recorded around 1,040 °C and at 700 °C. About 40 % of ultramafic plutonic rocks have to crystallize to generate basaltic–andesitic liquids, and an additional 40 % of amphibole–gabbroic cumulate to produce granitic melts. Andesitic liquids with a liquidus temperature of 1,010 °C only crystallize 50 % over an 280 °C wide range to 730 °C implying that such liquids form mobile crystal mushes (<50 % crystals) in long-lived magmatic systems in the middle crust, allowing for extensive fractionation, assimilation and hybridization with periodic replenishment of more mafic magmas from deeper magma reservoirs.

Keywords

Liquid line of descent Fractional crystallization Calc-alkaline magmas Mid-crustal magma reservoirs 

Notes

Acknowledgments

The work is part of the ProDoc program “4-D Adamello” and was supported by the Swiss National Science Foundation (grants PDFMP2-123097/1 and PDAMP2-123074). We would like to acknowledge Eric Reusser for his help using EPMA and Micro-Raman spectroscopy. Thoughtful comments by Tom Sisson on an earlier version of this manuscript are gratefully acknowledged. Constructive comments by two anonymous reviewers helped improve this manuscript.

Supplementary material

410_2014_1015_MOESM1_ESM.doc (270 kb)
Supplementary material 1 (DOC 269 kb)
410_2014_1015_MOESM2_ESM.doc (352 kb)
Supplementary material 2 (DOC 352 kb)
410_2014_1015_MOESM3_ESM.doc (337 kb)
Supplementary material 3 (DOC 337 kb)
410_2014_1015_MOESM4_ESM.xlsx (12 kb)
Supplementary material 4 (XLSX 11 kb)
410_2014_1015_MOESM5_ESM.xlsx (34 kb)
Supplementary material 5 (XLSX 33 kb)

References

  1. Allen JC, Boettcher AL (1983) The stability of amphibole in andesite and basalt at high pressures. Am Mineral 68(3–4):307–314Google Scholar
  2. Almeev RR, Holtz F, Ariskin AA, Kimura JI (2013) Storage conditions of Bezymianny Volcano parental magmas: results of phase equilibria experiments at 100 and 700 MPa. Contrib Mineral Petrol 166(5):1389–1414. doi: 10.1007/s00410-013-0934-x CrossRefGoogle Scholar
  3. Alonso-Perez R (2006) The role of garnet in the evolution of hydrous, calc-alkaline magmas: An experimental study at 0.8-1.5 GPa. PhD thesis ETH No 16999Google Scholar
  4. Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83(9–10):1127–1132Google Scholar
  5. Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45(8):1565–1582. doi: 10.1093/petrology/egh019 CrossRefGoogle Scholar
  6. Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb. J Petrol 32(2):365–401CrossRefGoogle Scholar
  7. Blatter DL, Sisson TW, Hankins WB (2013) Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol 166(3):861–886. doi: 10.1007/s00410-013-0920-3 CrossRefGoogle Scholar
  8. Bohlen SR, Essene EJ, Boettcher AL (1980) Reinvestigation and application of olivine-quartz-orthopyroxene barometry. Earth Planet Sci Lett 47(1):1–10. doi: 10.1016/0012-821x(80)90098-9 CrossRefGoogle Scholar
  9. Bose K, Ganguly J (1995) Quartz-coesite transition revisited: reversed experimental-determination at 500-1200-degrees-C and retrieved thermochemical properties. Am Mineral 80(3–4):231–238Google Scholar
  10. Bowen N (1928) The evolution of the igneous rocks. Princeton University Press, PrincetonGoogle Scholar
  11. Broderick C (2013) Timesclaes and petrologic processes during incremental pluton assembly: a case study from the Val Fredda Complex, Adamello Batholith, N. Italy. Phd thesis University of GenevaGoogle Scholar
  12. Brown M, Solar GS (1998) Granite ascent and emplacement during contractional deformation in convergent orogens. J Struct Geol 20(9–10):1365–1393. doi: 10.1016/s0191-8141(98)00074-1 CrossRefGoogle Scholar
  13. Caricchi L, Burlini L, Ulmer P, Gerya T, Vassalli M, Papale P (2007) Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet Sci Lett 264(3–4):402–419. doi: 10.1016/j.epsl.2007.09.032 CrossRefGoogle Scholar
  14. Cawthorn RG, O’Hara MJ (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276(3):309–329CrossRefGoogle Scholar
  15. Cawthorn RG, Strong DF, Brown PA (1976) Origin of corundum-normative intrusive and extrusive magmas. Nature 259(5539):102–104. doi: 10.1038/259102a0 CrossRefGoogle Scholar
  16. Chayes F (1969) The chemical composition of Cenozoic andesite. In: McBirney AR (ed) Proceedings of the andesite conference: state of Oregon, Dept Geol Mineral Ind Bull, vol 65. pp 1–12Google Scholar
  17. Clemens JD (1989) The Importance of Residual Source Material (Restite) in Granite Petrogenesis: a Comment. J Petrol 30(5):1313–1316CrossRefGoogle Scholar
  18. Clemens JD, Mawer CK (1992) Granitic magma transport by fracture propagation. Tectonophysics 204(3–4):339–360. doi: 10.1016/0040-1951(92)90316-x CrossRefGoogle Scholar
  19. Clemens JD, Stevens G, Farina F (2011) The enigmatic sources of I-type granites: the peritectic connexion. Lithos 126(3–4):174–181. doi: 10.1016/j.lithos.2011.07.004 CrossRefGoogle Scholar
  20. Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochemistry Geophysics Geosystems 10. doi: 10.1029/2008gc002138
  21. Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35(9):787–790. doi: 10.1130/g23637a.1 CrossRefGoogle Scholar
  22. Dessimoz M, Müntener O, Ulmer P (2012) A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades). Contrib Mineral Petrol 163(4):567–589. doi: 10.1007/s00410-011-0685-5 CrossRefGoogle Scholar
  23. Di Muro A, Villemant B, Montagnac G, Scaillet B, Reynard B (2006) Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry. Geochim Cosmochim Acta 70(11):2868–2884. doi: 10.1016/j.gca.2006.02.016 CrossRefGoogle Scholar
  24. Gaetani GA, Grove TL, Bryan WB (1993) The influence of water on the petrogenesis of subductionrelated igneous rocks. Nature 365(6444):332–334. doi: 10.1038/365332a0 CrossRefGoogle Scholar
  25. Ghiorso MS, Sack RO (1995) Chemical Mass Transfer in Magmatic Processes. IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contrib Mineral Petrol 119(2–3):197–212. doi: 10.1007/bf00307281 CrossRefGoogle Scholar
  26. Gill J (1981) Orogenic andesites and plate tectonics. Springer, New YorkGoogle Scholar
  27. Goldstein JI, Newbury DE, Echlin P, Joy DC, Fiori C, Lifshin E (1992) Scanning electron microscopy and x-ray microanalysis. Plenum Press, New YorkCrossRefGoogle Scholar
  28. Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for Silica-rich. Fluid-bearing Magmatic Systems. J Petrol 53(5):875–890. doi: 10.1093/petrology/egr080 Google Scholar
  29. Helz RT (1976) Phase relations of basalts in their melting ranges at PH2O = 5 kb. Part II. Melt compositions. J Petrol 17(2):139–193Google Scholar
  30. Hernlund J, Leinenweber K, Locke D, Tyburczy JA (2006) A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am Mineral 91(2–3):295–305. doi: 10.2138/am.2006.1938 CrossRefGoogle Scholar
  31. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98(4):455–489. doi: 10.1007/bf00372365 CrossRefGoogle Scholar
  32. Hilyard M, Nielsen RL, Beard JS, Patino-Douce A, Blencoe J (2000) Experimental determination of the partitioning behavior of rare earth and high field strength elements between pargasitic amphibole and natural silicate melts. Geochim Cosmochim Acta 64(6):1103–1120. doi: 10.1016/s0016-7037(99)00379-8 CrossRefGoogle Scholar
  33. Huang WL, Wyllie PJ (1986) Phase relationships of gabbro-tonalite-granite-water at 15 kbar with applications to differentiation and anatexis. Am Mineral 71(3–4):301–316Google Scholar
  34. Hürlimann N, Müntener O, Ulmer P, Chiaradia M, Nandedkar R (2014) Fractionation of primitive arc-tholeiite magmas to corundum normative dacites. J Petrol submittedGoogle Scholar
  35. Iacono-Marziano G, Morizet Y, Le Trong E, Gaillard F (2012) New experimental data and semi-empirical parameterization of H2O-CO2 solubility in mafic melts. Geochim Cosmochim Acta 97:1–23. doi: 10.1016/j.gca.2012.08.035 CrossRefGoogle Scholar
  36. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8(5):523–548CrossRefGoogle Scholar
  37. Jagoutz O, Müntener O, Schmidt MW, Burg J-P (2011) The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet Sci Lett 303(1–2):25–36. doi: 10.1016/j.epsl.2010.12.017 CrossRefGoogle Scholar
  38. Kagami H, Ulmer P, Hansmann W, Dietrich V, Steiger RH (1991) Nd-Sr isotopic and geochemical characteristics of the southern Adamello (northern Italy) intrusives: implications for crustal versus mantle origin. J Geophys Res 96(B9):14331–14346. doi: 10.1029/91jb01197 CrossRefGoogle Scholar
  39. Kägi R, Müntener O, Ulmer P, Ottolini L (2005) Piston-cylinder experiments on H2O undersaturated Fe-bearing systems: an experimental setup approaching fO2 conditions of natural calc-alkaline magmas. Am Mineral 90(4):708–717. doi: 10.2138/am.2005.1663 CrossRefGoogle Scholar
  40. Kawamoto T (1996) Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth Planet Sci Lett 144(3–4):577–589. doi: 10.1016/s0012-821x(96)00182-3 CrossRefGoogle Scholar
  41. Kay RW, Kay SM (1991) Creation and destruction of lower continental-crust. Geol Rundsch 80(2):259–278. doi: 10.1007/bf01829365 CrossRefGoogle Scholar
  42. Korolyuk YN, Usova LV, Nigmatulina EN (2009) Accuracy in the determination of the compositions of main rockforming silicates and oxides on a JXA-8100 microanalyer. J Anal Chem 64(10):1042–1046CrossRefGoogle Scholar
  43. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108(1–2):82–92. doi: 10.1007/bf00307328 CrossRefGoogle Scholar
  44. Kuno H (1968) Differentiation of basalt magmas. In: Hess HH, Poldervaart AA (eds) Basalts: The Poldervaart treatise on rocks of basaltic composition, vol 2. Interscience, New York, pp 623–688Google Scholar
  45. Larocque J, Canil D (2010) The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, Vancouver Island. Canada. Contrib Mineral Petrol 159(4):475–492. doi: 10.1007/s00410-009-0436-z CrossRefGoogle Scholar
  46. Luth RW (1989) Natural versus experimental control of oxidation state effects on the composition and speciation of C-O-H-fluids. Am Mineral 74(1–2):50–57Google Scholar
  47. Maniar PD, Piccoli PM (1989) tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643CrossRefGoogle Scholar
  48. Melekhova E, Annen C, Blundy J (2013) Compositional gaps in igneous rock suites controlled by magma system heat and water content. Nat Geosci 6(5):385–390. doi: 10.1038/ngeo1781 CrossRefGoogle Scholar
  49. Mercier M, Di Muro A, Giordano D, Metrich N, Lesne P, Pichavant M, Scaillet B, Clocchiatti R, Montagnac G (2009) Influence of glass polymerisation and oxidation on micro-Raman water analysis in alumino-silicate glasses. Geochim Cosmochim Acta 73(1):197–217. doi: 10.1016/j.gca.2008.09.030 CrossRefGoogle Scholar
  50. Müntener O, Ulmer P (2006) Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys Res Lett 33(21):L21308. doi: 10.1029/2006gl027629 CrossRefGoogle Scholar
  51. Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141(6):643–658CrossRefGoogle Scholar
  52. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visiual Basic for excel. Comput Geosci 28:597–604CrossRefGoogle Scholar
  53. Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44(1–2):53–82. doi: 10.1016/s0024-4937(98)00022-x CrossRefGoogle Scholar
  54. Pistone M, Caricchi L, Ulmer P, Burlini L, Ardia P, Reusser E, Marone F, Arbaret L (2012) Deformation experiments of bubble- and crystal-bearing magmas: Rheological and microstructural analysis. J of Geophys Res 117. doi: 10.1029/2011jb008986
  55. Pistone M, Caricchi L, Ulmer P, Reusser E, Ardia P (2013) Rheology of volatile-bearing crystal mushes: mobilization vs. viscous death. Chem Geol 345:16–39. doi: 10.1016/j.chemgeo.2013.02.007 CrossRefGoogle Scholar
  56. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931CrossRefGoogle Scholar
  57. Ratajeski K, Sisson TW (1999) Loss of iron to gold capsules in rock-melting experiments. Am Mineral 84(10):1521–1527Google Scholar
  58. Sisson TW, Grove TL (1993a) Experimental investigations of the role of H20 in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166. doi: 10.1007/bf00283225 CrossRefGoogle Scholar
  59. Sisson TW, Grove TL (1993b) Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol 113(2):167–184. doi: 10.1007/bf00283226 CrossRefGoogle Scholar
  60. Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148(6):635–661. doi: 10.1007/s00410-004-0632-9 CrossRefGoogle Scholar
  61. Spear FS, Kimball KL (1984) RECAMP—A FORTRAN IV program for estimating Fe3+ contents in amphiboles. Compu Geosci 10(2–3):317–325. doi: 10.1016/0098-3004(84)90029-3 CrossRefGoogle Scholar
  62. Stern CR, Huang WL, Wyllie PJ (1975) Basalt-andesite-rhyolite-H2O - Crystallization intervals with excess H2O and H2O-undersaturated liquidus surfaces to 35 kilobars, with implications for magma genesis. Earth Planet Sci Lett 28(2):189–196. doi: 10.1016/0012-821x(75)90226-5 CrossRefGoogle Scholar
  63. Ulmer P (1986) Basische und ultrabasische Gesteine des Adamello (Provinzen Brescia und Trento, Norditalien). PhD thesis ETH No 8105Google Scholar
  64. Ulmer P (1989) The dependence of Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition An experimental study to 30 kbars. Contrib Mineral Petrol 101(3):261–273. doi: 10.1007/bf00375311 CrossRefGoogle Scholar
  65. Ulmer P (2001) Partial melting in the mantle wedge - the role of H(2)O in the genesis of mantle-derived ‘arc-related’ magmas. Phys Earth Planet Int 127(1–4):215–232. doi: 10.1016/s0031-9201(01)00229-1 CrossRefGoogle Scholar
  66. Ulmer P (2007) Differentiation of mantle-derived calc-alkaline magmas at mid to lower crustal levels: experimental and petrologic constraints. Periodico di Mineralogia 76(2–3):309–325. doi: 10.2451/2007pm0030 Google Scholar
  67. Ulmer P, Luth RW (1991) The graphite-COH fluid equilibrium in P, T, fO2 space: an experimental determination to 30 kbar and 1600 & #xB0;C. Contrib Mineral Petrol 106(3):265–272. doi: 10.1007/bf00324556 CrossRefGoogle Scholar
  68. Ulmer P, Kaegi R, Muentener O (2014) Fractional and equilibrium crystallization of primary, hydrous arc magmas at lower crustal conditions. An experimental study at 1.0 GPa. J Petrol submittedGoogle Scholar
  69. Vigneresse JL, Barbey P, Cuney M (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J Petrol 37(6):1579–1600. doi: 10.1093/petrology/37.6.1579 CrossRefGoogle Scholar
  70. Villiger S, Ulmer P, Müntener O, Thompson AB (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization - an experimental study at 1.0 GPa. J Petrol 45(12):2369–2388. doi: 10.1093/petrology/egh042 CrossRefGoogle Scholar
  71. Villiger S, Ulmer P, Müntener O (2007) Equilibrium and fractional crystallization experiments at 07 GPa; the effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J Petrol 48(1):159–184. doi: 10.1093/petrology/egl058 CrossRefGoogle Scholar
  72. Wager L, Deer W (1939) The petrology of the Skaergaard intrusion, Kangerlassuaq. East Greenland. Medd Groenl 105(4):1–352Google Scholar
  73. Wall VJ, Clemens JD, Clarke DB (1987) Models for granitoid evolution and source compositions. J Geol 95(6):731–749CrossRefGoogle Scholar
  74. Whitaker ML, Nekvasil H, Lindsley DH, McCurry M (2008) Can crystallization of olivine tholeiite give rise to potassic rhyolites? an experimental investigation. Bull Volc 70(3):417–434. doi: 10.1007/s00445-007-0146-1 CrossRefGoogle Scholar
  75. Williams H, Turner FJ, Gilbert CM (1955) Petrography: an introduction to the study of rocks in thin section. W. H. Freeman and Company, San FranciscoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rohit H. Nandedkar
    • 1
  • Peter Ulmer
    • 1
  • Othmar Müntener
    • 2
  1. 1.Institute of Geochemistry and PetrologyZürichSwitzerland
  2. 2.Institute of Earth SciencesLausanneSwitzerland

Personalised recommendations