Skip to main content

Advertisement

Log in

TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present the geochemistry and intrusion pressures of granitoids from the Kohistan batholith, which represents, together with the intruded volcanic and sedimentary units, the middle and upper arc crust of the Kohistan paleo-island arc. Based on Al-in-hornblende barometry, the batholith records intrusion pressures from ~0.2 GPa in the north (where the volcano-sedimentary cover is intruded) to max. ~0.9 GPa in the southeast. The Al-in-hornblende barometry demonstrates that the Kohistan batholith represents a complete cross section across an arc batholith, reaching from the top at ~8–9 km depth (north) to its bottom at 25–35 km (south-central to southeast). Despite the complete outcropping and accessibility of the entire batholith, there is no observable compositional stratification across the batholith. The geochemical characteristics of the granitoids define three groups. Group 1 is characterized by strongly enriched incompatible elements and unfractionated middle rare earth elements (MREE)/heavy rare earth element patterns (HREE); Group 2 has enriched incompatible element concentrations similar to Group 1 but strongly fractionated MREE/HREE. Group 3 is characterized by only a limited incompatible element enrichment and unfractionated MREE/HREE. The origin of the different groups can be modeled through a relatively hydrous (Group 1 and 2) and of a less hydrous (Group 3) fractional crystallization line from a primitive basaltic parent at different pressures. Appropriate mafic/ultramafic cumulates that explain the chemical characteristics of each group are preserved at the base of the arc. The Kohistan batholith strengthens the conclusion that hydrous fractionation is the most important mechanism to form volumetrically significant amounts of granitoids in arcs. The Kohistan Group 2 granitoids have essentially identical trace element characteristics as Archean tonalite–trondhjemite–granodiorite (TTG) suites. Based on these observations, it is most likely that similar to the Group 2 rocks in the Kohistan arc, TTG gneisses were to a large part formed by hydrous high-pressure differentiation of primitive arc magmas in subduction zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ague JJ (1997) Thermodynamic calculation of emplacement pressures for batholithic rocks, California: implications for the aluminium-in-hornblende barometer. Geology 25(6):563–566

    Article  Google Scholar 

  • Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on H2O undersaturated andesitic liquids. Contrib Miner Petrol 157:541–558

    Article  Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and F(O2) on the Al-in-hornblende barometer. Am Mineral 80(5–6):549–559

    Google Scholar 

  • Blundy JD, Holland TJB (1990) Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib Mineral Petrol 104(2):208–224. doi:10.1007/Bf00306444

    Article  Google Scholar 

  • Bouilhol P, Jagoutz O, Hanchar J, Dudas F (2013) Dating the India-Eurasia collision through arc magmatic records. Earth Planet Sci Lett 366:163–175

    Article  Google Scholar 

  • Burg JP (2011) The Asia–Kohistan–India collision: review and discussion. In: Arc-continent collision. Springer, Berlin, pp 279–309

  • Burg JP, Arbaret L, Chaudhry NM, Dawood H, Hussain S, Zeilinger G (2005) Shear strain localization from the upper mantle to the middle crust of the Kohistan Arc (Pakistan). In: Bruhn D, Burlini L (eds) High-strain zones: structure and physical properties, vol 245. Geological Society, London, pp 25–38

    Google Scholar 

  • Burg JP, Jagoutz O, Hamid D, Hussain S (2006) Pre-collision tilt of crustal blocks in rifted island arcs: structural evidence from the Kohistan Arc. Tectonics 25(5):13. doi:10.1029/2005TC001835

    Google Scholar 

  • Chappell B, White A (1992) I-and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83(1):26

    Google Scholar 

  • Clemens JD (1990) The granulite-granite connexion. In: Vielzeuf D (ed) Granulites and crustal evolution. Kluwer, Dordrecht, pp 25–36

    Chapter  Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86(2–4):287–306

    Article  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104(1–4):1–37

    Article  Google Scholar 

  • Condie KC (1997) Plate tectonics and crustal evolution. Butterworth-Heinemann, Newton

    Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35(9):787–790

    Article  Google Scholar 

  • Dhuime B, Bosch D, Bodinier JL, Garrido CJ, Bruguier O, Hussain SS, Dawood H (2007) Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan): implications for building the roots of island arcs. Earth Planet Sci Lett 261:179–200

    Article  Google Scholar 

  • Drummond MS, Defant MJ (1990) A Model for Trondhjemite–Tonalite–Dacite genesis and crustal growth via slab melting—archean to modern comparisons. J Geophys Res Solid Earth Planets 95(B13):21503–21521

    Article  Google Scholar 

  • Dufek J, Bergantz GW (2005) Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of the basalt–crust interaction. J Petrol 46(11):2167–2195

    Article  Google Scholar 

  • Garrido CJ, Bodinier JL, Burg JP, Zeilinger G, Hussain SS, Dawood H, Chaudhry MN, Gervilla F (2006) Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (northern Pakistan); implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol 47(10):1873–1914

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass-transfer in magmatic processes. 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contrib Miner Petrol 119(2–3):197–212

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1–4):123–134

    Article  Google Scholar 

  • Green T (1972) Crystallization of calc-alkaline andesite under controlled high pressure hydrous conditions. Contrib Mineral Petrol 34:150–166

    Article  Google Scholar 

  • Green T (1982) Anatexis of mafic crust and high pressure crystallization of andesite. In: Thorpe RS (ed) Andesites: orogrenic andesites and related rocks. Wiley, New York, pp 465–487

    Google Scholar 

  • Gromet P, Silver LT (1987) REE variations across the Peninsular Ranges batholith: implications for batholithic petrogenesis and crustal growth in magmatic arcs. J Petrol 28(1):75–125

    Article  Google Scholar 

  • Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142(4):375–396

    Article  Google Scholar 

  • Hammarstrom JM, Zen E (1986) Aluminium in hornblende: an empirical igneous geobarometer. Am Mineral 71(3):1297–1313

    Google Scholar 

  • Heuberger S, Schaltegger U, Burg JP, Villa IM, Frank M, Dawood H, Hussain S, Zanchi A (2007) Age and isotopic constraints on magmatism along the Karakoram-Kohistan Suture Zone, NW Pakistan: Evidence for subduction and continued convergence after India-Asia collision. Swiss J Geosci. doi:10.1007/s00015-007-1203-7

  • Holland T, Blundy J (1994) Nonideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116(4):433–447. doi:10.1007/Bf00310910

    Article  Google Scholar 

  • Hollister LS, Grissom G, Peters E, Stowell H, Sisson V (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72(3–4):231–239

    Google Scholar 

  • Jagoutz O (2010) Construction of the granitoid crust of an island arc part II: a quantitative petrogenetic model. Contrib Mineral Petrol 160:359–381

    Article  Google Scholar 

  • Jagoutz O (2013) Were ancient granitoid compositions influenced by contemporaneous atmospheric and hydrosphere oxidation states? Terra Nova 25(3):95–101

    Article  Google Scholar 

  • Jagoutz O, Schmidt M (2012) The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem Geol 298–299:79–96

    Article  Google Scholar 

  • Jagoutz O, Schmidt MW (2013) The nature and composition of the crustal delaminate in arcs. Earth Planet Sci Lett 371–372:177–190. http://dx.doi.org/10.1016/j.epsl.2013.03.051

  • Jagoutz O, Müntener O, Burg J-P, Ulmer P, Jagoutz E (2006) Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas Complex in the Kohistan Island arc (NW Pakistan). Earth Planet Sci Lett 242(3–4):320–342

    Article  Google Scholar 

  • Jagoutz O, Müntener O, Ulmer P, Burg J-P, Pettke T (2007) Petrology and mineral chemistry of lower crustal intrusions: the Chilas Complex, Kohistan (NW Pakistan). J Petrol 48(10):1895–1953

    Article  Google Scholar 

  • Jagoutz O, Burg J-P, Hussain S, Dawood HTP, Iizuka T, Maruyama S (2009) Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contrib Mineral Petrol 158(6):739–755

    Article  Google Scholar 

  • Jagoutz O, Muentener O, Schmidt MW, Burg JP (2011) The respective roles of flux- and decompression melting and their relevant liquid lines of descent for continental crust formation: evidence from the Kohistan arc. Earth Planet Sci Lett 303:25–36

    Article  Google Scholar 

  • Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminium-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17(9):837–841

    Article  Google Scholar 

  • Khan MA, Jan MQ, Windley BF, Tarney J, Thirlwall MF (1989) The Chilas mafic-ultramafic igneous complex; the root of the Kohistan island arc in the Himalaya of northern Pakistan. In: Malinconico Lawrence L Jr, Lillie Robert J (eds) Tectonics of the western Himalayas, vol 232. Geological Society of America (GSA), Boulder, pp 75–94

    Chapter  Google Scholar 

  • Khan T, Murata M, Karim T, Zafar M, Ozawa H, Hafeez-ur-Rehman H (2007) A cretaceous dike swarm provides evidence of a spreading axis in the back-arc basin of the Kohistan paleo-island arc, northwestern Himalaya, Pakistan. J Asian Earth Sci 29(2–3):350–360. doi:10.1016/J.Jseaes.2006.04.001

    Article  Google Scholar 

  • Kleinhanns IC, Kramers JD, Kamber BS (2003) Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa. Contrib Mineral Petrol 145(3):377–389

    Article  Google Scholar 

  • Lambert IB, Wyllie PJ (1972) Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications. J Geol 80(6):693–708

    Article  Google Scholar 

  • Lambert IB, Wyllie PJ (1974) Melting of tonalite and crystallization of andesite liquid with excess water to 30 kilobars. J Geol 82:88–97

    Google Scholar 

  • Leake BE (1978) Nomenclature of amphiboles. Am Mineral 63(11–12):1023–1052

    Google Scholar 

  • Lee CTA, Morton DM, Kistler RW, Baird AK (2007) Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth Planet Sci Lett 263(3–4):370–387

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46(3):411–429

    Article  Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102(3–4):358–374

    Article  Google Scholar 

  • Mcdonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Article  Google Scholar 

  • Moyen JF (2011) The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123(1–4):21–36

    Article  Google Scholar 

  • Moyen J, Stevens G (2006) Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. In: Benn K, Mareschal J-C, Condie KC (eds) Archean geodynamics and environments, vol 164. AGU, Washington, pp 149–175

    Chapter  Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites; an experimental study. Contrib Miner Petrol 141(6):643–658

    Article  Google Scholar 

  • Nawaz M, Hussain S, Qamar N, Ul-Islam Z, Akhtar J, Ur-Rehman S (1987) Geology and Petrography of Barawal-Dir-Bibior area. Geol Bull Punjab Univ 112:1543–1558

    Google Scholar 

  • Petterson MG, Treloar PJ (2004) Volcanostratigraphy of arc volcanic sequences in the Kohistan arc, North Pakistan: volcanism within island arc, back-arc-basin, and intra-continental tectonic settings. J Volcanol Geother Res 130:147–178

    Article  Google Scholar 

  • Petterson MG, Windley BF (1985) Rb–Sr dating of the Kohistan arc-batholith in the trans-Himalaya of north Pakistan, and tectonic implications. Earth Planet Sci Lett 74(1):45–57

    Article  Google Scholar 

  • Petterson MG, Windley BF (1986) Petrological and geochemical evolution of the Kohistan arc-batholith, Gilgit, N. Pakistan. Geol Bull Univ Peshawar 19:121–149

    Google Scholar 

  • Petterson MG, Windley BF (1991) Changing source regions of magmas and crustal growth in the trans-Himalayas; evidence from the Chalt Volcanics and Kohistan Batholith, Kohistan, northern Pakistan. Earth Planet Sci Lett 102(3–4):326–341

    Article  Google Scholar 

  • Reubi O, Blundy J (2009) A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461(7268):1269–1273

    Article  Google Scholar 

  • Ringuette L, Martignole J, Windley BF (1999) Magmatic crystallization, isobaric cooling, and decompression of the garnet-bearing assemblages of the Jijal Sequence (Kohistan Terrane, western Himalayas. Geology (Boulder) 27(2):139–142

    Article  Google Scholar 

  • Rudnick R, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The crust, vol 3. Oxford, Elsevier, pp 1–64

    Google Scholar 

  • Saleeby J, Ducea M, Clemens-Knott D (2003) Production and loss of high-density batholithic root, southern Sierra Nevada, California. Tectonics 22(6), art no 1064. doi:10.1029/2002tc001374

  • Schaltegger U, Zeilinger G, Frank M, Burg JP (2002) Multiple mantle sources during island arc magmatism, U–Pb and Hf isotopic evidence from the Kohistan arc complex, Pakistan. Terra Nova 14(6):461–468

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in Tonalite as a function of pressure—an experimental calibration of the Al-in-hornblende barometer. Contrib Miner Petrol 110(2–3):304–310

    Article  Google Scholar 

  • Schmidt MW, Thompson AB (1996) Epidote in calc-alkaline magmas: an experimental study of stability, phase relationships, and the role of epidote in magmatic evolution. Am Mineral 81(3–4):462–474

    Google Scholar 

  • Schmidt MW, Poli S (2004) Magmatic epidote. Rev Mineral Geochem 56(1):399–430. doi:10.2138/gsrmg.56.1.399

    Article  Google Scholar 

  • Sisson TW, Bronto S (1998) Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391(6670):883–886

    Article  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Miner Petrol 148(6):635–661

    Article  Google Scholar 

  • Smithies RH (2000) The Archaean tonalite–trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182(1):115–125

    Article  Google Scholar 

  • Streckeisen AL (1974) Classification and nomenclature of plutonic rocks. Recommendations of the IUGS subcommission on the systematics of igneous rocks. Geologische Rundschau. Internationale Zeitschrift für Geologie, Stuttgart 63:773–785

    Google Scholar 

  • Sullivan MA, Windley BF, Saunders AD, Haynes JR, Rex DC (1993) A palaeogeographic reconstruction of the Dir Group; evidence for magmatic arc migration within Kohistan, N. Pakistan. In: Treloar PJ, Searle MP (eds) Himalayan tectonics, vol 74. Geological Society of London, London, pp 139–160

    Google Scholar 

  • Tahirkheli RAK (1979) Geology of Kohistan and adjoining Eurasia and Indio-Pakistan continents, Pakistan. Geol Bull Univ Peshawar 11:1–30

    Google Scholar 

  • Tamura Y, Gill JB, Tollstrup D, Kawabata H, Shukuno H, Chang Q, Miyazaki T, Takahashi T, Hirahara Y, Kodaira S, Ishizuka O, Suzuki T, Kido Y, Fiske RS, Tatsumi Y (2009) Silicic magmas in the Izu-Bonin Oceanic arc and implications for crustal evolution. J Petrol 50(4):685–723

    Article  Google Scholar 

  • Tatsumi Y, Shukuno H, Tani K, Takahashi N, Kodaira S, Kogiso T (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution. J Geophys Res 113(B2), art no B02203. doi:10.1029/2007jb005121

  • Thompson AB, Algor JR (1977) Model systems for anataxis of pelitic rocks.1. Theory of melting reactions in system KalO2–NalO2–Al2O3–SiO2–H2O. Contrib Miner Petrol 63(3):247–269

    Article  Google Scholar 

  • Treloar PJ, Rex DC, Guise PG, Coward MP, Searle MP, Windley BF, Petterson MG, Jan MQ, Luff IW (1989) K–Ar and Ar–Ar geochronology of the Himalayan collision in NW Pakistan; constraints on the timing of suturing, deformation, metamorphism and uplift. Tectonics 8(4):881–909

    Article  Google Scholar 

  • van der Beek P, Van Melle J, Guillot S, Pêcher A, Reiners PW, Nicolescu S, Latif M (2009) Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nat Geosci 2(5):364–368

    Article  Google Scholar 

  • Vielzeuf D, Schmidt MW (2001) Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contrib Miner Petrol 141(3):251–267

    Article  Google Scholar 

  • Villiger S, Ulmer P, Muntener O, Thompson AB (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—an experimental study at 1.0 GPa. J Petrol 45(12):2369–2388. doi:10.1093/Petrology/Egh042

    Article  Google Scholar 

  • Yamamoto H (1993) Contrasting metamorphic P–T-time paths of the Kohistan granulites and tectonics of the western Himalayas. J Geol Soc Lond 150(Part 5):843–856

    Google Scholar 

  • Yamamoto H, Kobayashi K, Nakamura E, Kaneko Y, Kausar Allah B (2005) U–Pb zircon dating of regional deformation in the lower crust of the Kohistan Arc. Int Geol Rev 47:1035–1047

    Article  Google Scholar 

  • Yamamoto H, Rehman HU, Kaneko Y, Kausar AB (2011) Tectonic stacking of back-arc formations in the Thelichi section (Indus valley) of the Kohistan arc, northern Pakistan. J Asian Earth Sci 40(2):417–426

    Article  Google Scholar 

  • Yoshino T, Okudaira T (2004) Crustal growth by magmatic accretion constrained by metamorphic P–T paths and thermal models of the Kohistan arc, NW Himalayas. J Petrol 45:2287–2302

    Article  Google Scholar 

  • Yoshino T, Yamamoto H, Okudaira T, Toriumi M (1998) Crustal thickening of the lower crust of the Kohistan Arc (N. Pakistan) deduced from Al zoning in clinopyroxene and plagioclase. J Metamorph Geol 16(6):729–748

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Burri-Grubenmann foundation of IMP, ETH and the Albert Barth-Fund ETH to AE. OJ was supported by NSF EAR 6920005. We thank Peter Ulmer for help with the XRF analyses. Furthermore, we thank the people from Kohistan for their hospitality and kind assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Jagoutz.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2161 kb)

Supplementary material 2 (XLS 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagoutz, O., Schmidt, M.W., Enggist, A. et al. TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust. Contrib Mineral Petrol 166, 1099–1118 (2013). https://doi.org/10.1007/s00410-013-0911-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0911-4

Keywords

Navigation