Skip to main content
Log in

Iron in monticellite as an oxygen barometer for kimberlite magmas

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

An Erratum to this article was published on 21 February 2012

Abstract

Monticellite is a common magmatic mineral in the groundmass of kimberlites. A new oxygen barometer for kimberlite magmas is calibrated based on the Fe content of monticellite, CaMgSiO4, in equilibrium with kimberlite liquids in experiments at 100 kPa from 1,230 to 1,350°C and at logfO2 from NNO-4.1 to NNO+5.3 (where NNO is the nickel–nickel oxide buffer). The XFeMtc/XFeliq was found to decrease with increasing fO2, consistent with only Fe2+ entering the monticellite structure. Although the XFe-in-monticellite varies with temperature and composition, these dependencies are small compared to that with fO2. The experimental data were fitted by weighted least square regression to the following relationship: \( \Updelta {\text{NNO}} = \frac{{\left\{ {\log \left[ {0.858( \pm 0.021)\frac{{X_{\text{Fe}}^{\text{Liq}} }}{{X_{\text{Fe}}^{\text{Mtc}} }}} \right] - 0.139( \pm 0.022)} \right\}}}{0.193( \pm 0.004)} \) where ΔNNO is the fO2 relative to that of the Nickel-bunsenite (NNO) buffer and XFeliq/XFeMtc is the ratio of mole fraction of Fe in liquid and Fe-in-monticellite (uncertainties at 2σ). The application of this oxygen barometer to natural kimberlites from both the literature and our own investigations, assuming the bulk rock FeO is that of their liquid FeO, revealed a range in fO2 from NNO-3.5 to NNO+1.7. A range of Mg/(Mg + Fe2+) (Mg#) for kimberlite melts of 0.46–0.88 was derived from the application of the experimentally determined monticellite-liquid Kd Fe2+–Mg to natural monticellites. The range in Mg# is broader and less ultramafic than previous estimates of kimberlites, suggesting an evolution under a wide range of petrologic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akella J, Satyanarayana Rao P, McCallister RH, Boyd FR, Meyer HOA (1979) Mineralogical studies on the diamondiferous kimberlite of the Wajrakharur Area, Southern India. In: Kimberlites, diatremes, and diamonds: their geology, petrology, and geochemistry. Proceedings of the second international kimberlite conference, vol 1, AGU, Washington, DC, 2006, pp 172–177

  • Armstrong JT (1988) Quantitative analysis of silicates and oxide minerals: comparison of Monte Carlo, ZAF and Ф (ρz) procedures. In: Newbury DE (ed) Microbeam analysis, pp 239–246

  • Armstrong JT (1988) Bence-Albee after 20 years: review of the accuracy of a-factor correction procedures for oxide and silicate minerals. In Newbury DE (ed) Microbeam analysis, pp 469–476

  • Armstrong JP, Wilson M, Barnett RL, Nowicki T, Kjarsgaard BA (2004) Mineralogy of primary carbonate-bearing hypabyssal kimberlite, Lac de Gras, Slave Province, Northwest Territories, Canada. Lithos 76:415–433

    Article  Google Scholar 

  • Arndt NT, Guitreau M, Boullier A-M, Le Roex A, Tommasi A, Cordier P, Sobolev A (2010) Olivine, and the origin of kimberlite. J Petrol 51:573–602

    Article  Google Scholar 

  • Batumike JM, Griffin WL, Belousova EA, Pearson NJ, O’Reilly SY, Shee SR (2008) LAM-ICPMS U-Pb dating of kimberlitic perovskite: Eocene-Oligocene kimberlites from the Kundelungu Plateau, D.R. Congo. Earth Planet Sci Lett 267:609–619

    Article  Google Scholar 

  • Beard AD, Downes H, Hegner E, Sablukov SM (1998) Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia: implications for the petrogenesis of kimberlites and melilites. Contrib Mineral Petrol 130:228–303

    Article  Google Scholar 

  • Becker M, Le Roex AP (2006) Geochemistry of South African on- and-off craton, group i and group ii kimberlites: petrogenesis and source region evolution. J Petrol 47:673–703

    Article  Google Scholar 

  • Bellis AJ, Canil D (2007) Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberlitic magmas I: experimental calibration. J Petrol 48:219–230

    Article  Google Scholar 

  • Berg GW, Carlson JA (1998) The Leslie kimberlite pipe of Lac de Gras, Northwest Territories, Canada: evidence of near surface hypabyssal emplacement. In: Gurney J (ed) Extended abstracts, 7th international kimberlite conference. University of Cape Town, Cape Town, pp 81–83

    Google Scholar 

  • Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos 112S:201–212

    Article  Google Scholar 

  • Brooker RA, Sparks RSJ, Kavanagh, JL, Field M (2011) The volatile content of hypabyssal kimberlite magmas: some constraints from experiments on natural rock compositions. Bull Volcanol. doi:10.1007/s00445-011-0523-7

  • Canil D, Bellis AJ (2007) Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberlite magmas II: applications. J Petrol 48:231–252

    Article  Google Scholar 

  • Canil D, Bellis AJ (2008) Phase equilibria in a volatile-free kimberlite at 0.1 MPa and the search for primary kimberlite magma. Lithos 105:111–117

    Article  Google Scholar 

  • Canil D, Fedortchouk Y (2001) Olivine-liquid partitioning of vanadium and other trace elements, with applications to modern and ancient picrites. Can Mineral 39:319–330

    Article  Google Scholar 

  • Canil D, O’Neill HSC (1996) Distribution of ferric iron in some upper-mantle assemblages. J Petrol 37:609–635

    Article  Google Scholar 

  • Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106:129–141

    Article  Google Scholar 

  • Carmichael ISE, Ghiorso MS (1986) Oxidation-reduction relations in basic magma: a case for homogeneous equilibria. Earth Planet Sci Lett 78:200–210

    Article  Google Scholar 

  • Caro G, Kopylova MG (2004) The hypabyssal 5034 kimberlite of the Gahcho Kué cluster, Southeastern Salve Craton, Northwest Territories, Canada: a granite-contaminated group-I kimberlite. Can Mineral 42:183–207

    Article  Google Scholar 

  • Chakhmouradian AR, Mitchell RH (2000) Occurrence, alteration patterns and compositional variation of perovskite in kimberlites. Can Mineral 38:975–994

    Article  Google Scholar 

  • Chakhmouradian AR, Mitchell RH (2001) Three compositional varieties of perovskite from kimberlites of the Lac de Gras field (Northwest Territories, Canada). Mineral Mag 65:133–148

    Article  Google Scholar 

  • Chalapathi Rao NV, Srivastava RK (2009) Petrology and geochemistry of diamandiferous Mesoproterozoic kimberlites from Wajrakarur kimberlite field, Eastern Dharwar craton, southern India: genesis and constraints on mantle source regions. Contrib Mineral Petrol 157:245–265

    Article  Google Scholar 

  • Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar Craton, Southern India. J Petrol 45:907–948

    Article  Google Scholar 

  • Clement CR. (1982) A comparative geological study of some major kimberlite pipes in the Northern Cape and Orange Free State. Ph.D. thesis. University of Cape Town

  • Davidson PM, Mukhopadhyay DK (1984) Ca–Fe–Mg olivines: phase relations and a solution model. Contrib Mineral Petrol 86:256–263

    Article  Google Scholar 

  • Dawson JB, Hawthorne JB (1973) Magmatic sedimentation and carbonatitic differentiation in kimberlite sills at Benfontein, South Africa. J Geol Soc London 129:61–85

    Article  Google Scholar 

  • Deines P, Nafziger RH, Ulmer GC, Woermann E (1974) T-fO2 tables for selected gas mixtures in the C–H–O system. In: College earth mineral. Sci Bull Exp Station 88, The Pennsylvania State Univ

  • Dyar M (2003) Ferric iron in SNC meteorites as determined by Mössbauer spectroscopy: implications for Martian Landers and Martians oxygen fugacity. Meteorit Planet Sci 38:1733–1752

    Article  Google Scholar 

  • Fedortchouk Y, Canil D (2004) Intensive variables in kimberlite Magmas, Lac de Gras, Canada and implications for diamonds survival. J Petrol 45:1725–1745

    Article  Google Scholar 

  • Fedortchouk Y, Canil D, Carlson JA (2005) Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma. Contrib Mineral Petrol 150:54–69

    Article  Google Scholar 

  • Frost BR (1991) Introduction to oxygen fugacity and its petrologic significance. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Mineralogical Society of America, Washington, D.C., pp 1–10

    Google Scholar 

  • Fudali RF (1965) Oxygen fugacities of basaltic and andesitic magmas. Geochim Cosmochim Acta 29:1063–1075

    Article  Google Scholar 

  • Girnis AV, Bulatov VK, Brey GP (2005) Transition from kimberlite to carbonatite melt under mantle parameters: an experimental study. Petrology 13:1–15

    Google Scholar 

  • Grove TL (1981) Use of FePt alloys to eliminate the iron loss problem in 1-atmosphere gas mixing experiments: theoretical and practical considerations. Contrib Mineral Petrol 78:298–304

    Article  Google Scholar 

  • Harris M, Le Roex A, Class C (2004) Geochemistry of the Uintjiesberg kimberlite, South Africa: petrogenesis of an off-craton, group I, kimberlite. Lithos 74:149–165

    Article  Google Scholar 

  • Hirschmann M (1991) Thermodynamics of component olivines and the solution properties of (Ni, Mg, Fe)2SiO4 and (Ca, Mg, Fe)2SiO4 olivines. Am Mineral 76:1232–1248

    Google Scholar 

  • Kavanagh JL, Sparks RSJ (2009) Temperature changes in ascending kimberlite magma. Earth Planet Sci Lett 286:404–413

    Article  Google Scholar 

  • Kennedy GC (1948) Equilibrium between volatiles and iron oxides in igneous rocks. Am J Sci 110:529–549

    Article  Google Scholar 

  • Kilinc A, Carmichael ISE, Rivers ML, Sack RO (1983) The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol 83:136–140

    Article  Google Scholar 

  • Kjarsgaard BA, Pearson DG, Tappe S, Nowell GM, Dowall DP (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos 112S:236–248

    Article  Google Scholar 

  • Kopylova MG, Matveev S, Raudsepp M (2007) Searching for the parental kimberlite melt. Geochim Cosmochim Acta 71:3616–3629

    Article  Google Scholar 

  • Kress VC, Carmichael ISE (1988) Stoichiometry of the iron oxidation reaction in silicates melts. Am Mineral 73:1267–1274

    Google Scholar 

  • Le Roex AP, Bell DR, Davis P (2003) Petrogenesis of Group 1 Kimberlites from Kimberley, South Africa: Evidence from bulk-rock geochemistry. J Petrol 44:2261–2286

    Article  Google Scholar 

  • Mitchell RH (1978) Mineralogy of the Elwin Bay kimberlite, Somerset Island, N.W.T., Canada. Am Mineral 63:47–57

    Google Scholar 

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry, and petrology. Plenum Press, New York

    Google Scholar 

  • Nowicki T, Porritt L, Crawford B, Kjarsgaard B (2008) Geochemical trends in kimberlites of the Ekati property, Northwest Territories, Canada: insights on volcanic and re-sedimentation processes. J Volcanol Geotherm Res 174:117–127

    Article  Google Scholar 

  • Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magmas. Am J Sci 257:609–647

    Article  Google Scholar 

  • Osborn EF (1962) Reaction series for subalkaline igneous rocks based on different oxygen pressure conditions. Am Mineral 47:211–266

    Google Scholar 

  • Osborn EF, Roeder PL (1960) Effect of oxygen pressure on crystallization in simplified basalt systems: internat. Geol Cong 21st Copenhagen Proc Sec 13(pt. 13):147–155

    Google Scholar 

  • Paton C, Hergt JM, Woodhead JD, Phillips D, Shee SR (2009) Identifying the asthenospheric component of kimberlite magmas from the Dharwar Craton, India. Lithos 112S:296–310

    Article  Google Scholar 

  • Patterson M, Francis D, McCandless T (2009) Kimberlites: magmas or mixtures? Lithos 112S:191–200

    Article  Google Scholar 

  • Pieters CM, Klima RL, Hiroi T, Dyar MD, Lane MD, Treiman AH, Noble SK, Sunshine JM, Bishop JL (2008) Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine. J Geophys Res 113:E06004

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1985) PAP ϕ(ρZ) procedure for improved quantitative microanalysis. Microbeam Anal 104–106

  • Price SE, Russell JK, Kopylova MD (2000) Primitive magma from the Jericho Pipe, N.W.T., Canada: constraints on primary kimberlite melt chemistry. J Petrol 41:789–808

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Roeder PL, Reynolds I (1991) Crystallization of chromite and chromium solubility in basaltic melts. J Petrol 32:909–934

    Google Scholar 

  • Sack RO, Carmichael ISE, Rivers M, Ghiorso MS (1980) Ferric-ferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75:369–376

    Article  Google Scholar 

  • Seifert F, Czank M, Simons B, Schmahl W (1987) A commensurate-incommensurate phase transition in iron-bearing åkermanites. Phys Chem Miner 14:26–35

    Article  Google Scholar 

  • Sparks RSJ, Brooker RA, Field M, Kavanagh J, Schumacher JC, Walter MJ, White J (2009) The nature of erupting kimberlite melts. Lithos 112S:429–438

    Article  Google Scholar 

  • Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170

    Google Scholar 

  • Treiman AH, Dyar MD, McCanta M, Noble SK, Pieters CM (2007) Martian dunite NWA 2737: petrographic constraints on geological history, shock events, and olivine color. J Geophys Res 112:E04002

    Article  Google Scholar 

  • Wiedenmann D, Zaitsev AN, Britvin SN, Krivovichev SV, Keller J (2009) Alumoåkermanite, (Ca, Na)2(Al, Mg, Fe2+)(Si2O7), a new mineral from the active carbonatite-nephelinite-phonolite volcano Oldoinyo Lengai, northern Tanzania. Min Mag 73:373–384

    Article  Google Scholar 

  • Wu FY, Yang Y-H, Mitchell RH, Li Q-L, Yang J-H, Zhang Y-B (2010) In situ U-Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada. Lithos 115:205–222

    Article  Google Scholar 

  • Zhang RY, Shu JF, Mao HK, Liou JG (1999) Magnetite lamellae in olivine and clinohumite from Dabie UHP ultramafic rocks, central China. Am Mineral 84:564–569

    Google Scholar 

  • Zurevinski SE (2009) The origin and evolution of North American kimberlites. Ph.D. Thesis. University of Alberta

  • Zurevinski SE, Mitchell RH (2011) Highly evolved hypabyssal kimberlite sills from Wemindji, Quebec, Canada: insights into the process of flow differentiation in kimberlite magmas. Contrib Mineral Petrol 161:765–776

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Raudsepp and S. Kuehner for assistance with microprobe analyses. A thorough journal review by D. Bell is appreciated. This research was supported by NSERC of Canada Post Graduate Scholarship and FQRNT to ALP, and a NSERC of Canada Discovery Grant to DC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante Canil.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Pioufle, A., Canil, D. Iron in monticellite as an oxygen barometer for kimberlite magmas. Contrib Mineral Petrol 163, 1033–1046 (2012). https://doi.org/10.1007/s00410-011-0714-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0714-4

Keywords

Navigation