Skip to main content
Log in

Petrology and geochemistry of diamondiferous Mesoproterozoic kimberlites from Wajrakarur kimberlite field, Eastern Dharwar craton, southern India: genesis and constraints on mantle source regions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The petrology and geochemistry of some new occurrences of Mesoproterozoic diamondiferous hypabyssal-facies kimberlites from the Chigicherla, Wajrakarur-Lattavaram and Kalyandurg clusters of the Wajrakarur kimberlite field (WKF), Eastern Dharwar craton (EDC), southern India, are reported. The kimberlites contain two generations of olivine, and multiple groundmass phases including phlogopite, spinel, calcite, dolomite, apatite, perovskite, apatite and rare titanite, and xenocrysts of eclogitic garnet and picro-ilmenite. Since many of the silicate minerals in these kimberlites have been subjected to carbonisation and alteration, the compositions of the groundmass oxide minerals play a crucial role in their characterisation and in understanding melt compositions. While there is no evidence for significant crustal contamination in these kimberlites, some limited effects of ilmenite entrainment are evident in samples from the Kalyandurg cluster. Geochemical studies reveal that the WKF kimberlites are less differentiated and more primitive than those from the Narayanpet kimberlite field (NKF), Eastern Dharwar craton. Highly fractionated (La/Yb = 108–145) chondrite-normalised distribution patterns with La abundances of 500–1,000 × chondrite and low heavy rare earth elements (HREE) abundances of 5–10 × chondrite are characteristic of these rocks. Metasomatism by percolating melts from the convecting mantle, rather than by subduction-related processes, is inferred to have occurred in their source regions based on incompatible element signatures. While the majority of the Eastern Dharwar craton kimberlites are similar to the Group I kimberlites of southern Africa in terms of petrology, geochemistry and Sr–Nd isotope systematics, others show the geochemical traits of Group II kimberlites or an overlap between Group I and II kimberlites. Rare earth element (REE)-based semi-quantitative forward modelling of batch melting of southern African Group I and II kimberlite source compositions involving a metasomatised garnet lherzolite and very low degrees of partial melting demonstrate that (1) WKF and NKF kimberlites display a relatively far greater range in the degree of melting than those from the on-craton occurrences from southern Africa and are similar to that of world-wide melilitites, (2) different degrees of partial melting of a common source cannot account for the genesis of all the EDC kimberlites, (3) multiple and highly heterogeneous kimberlite sources involve in the sub-continental lithospheric mantle (SCLM) in the Eastern Dharwar craton and (4) WKF and NKF kimberlites generation is a resultant of complex interplay between the heterogeneous sources and their different degrees of partial melting. These observations are consistent with the recent results obtained from inversion modelling of REE concentrations from EDC kimberlites in that both the forward as wells as inverse melting models necessitate a dominantly lithospheric, and not asthenospheric, mantle source regions. The invading metasomatic (enriching) melts percolating from the convecting (asthenosphere) mantle impart an OIB-like isotopic signature to the final melt products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anil Kumar, Padma Kumari VM, Dayal AM, Murthy DSN, Gopalan K (1993) Rb–Sr ages of Proterozoic kimberlites of India: evidence for contemporaneous emplacement. Precambrian Res 62:227–232. doi:10.1016/0301-9268(93)90023-U

  • Anil Kumar, Gopalan K, Rao KRP, Nayak SS (2001) Rb–Sr ages of kimberlites and lamproites from Eastern Dharwar craton, South India. J Geol Soc India 58:135–142

  • Anil Kumar, Heaman LA, Manikyamba C (2007) Mesoproterozoic kimberlites in south India: a possible link to ~1.1 Ga global magmatism. Precambrian Res 15:192–204

  • Agashev M, Watanabe T, Byadaev DA, Pochilenko NP, Fomin AS, Maehara K et al (2001) Geochemistry of kimberlites from the Nakyn field, Siberia: evidence for unique source composition. Geology 29:267–270. doi :10.1130/0091-7613(2001)029<0267:GOKFTN>2.0.CO;2

    Article  Google Scholar 

  • Arndt AT (2003) Komatiites, kimberlites, and boninites. J Geophys Res 108(B6):2293. doi:10.1029/2002Jb002157

    Article  Google Scholar 

  • Babu EVSSK, Griffin WL, O’Reilley SO, Pearson NJ (2005) Sub-continental lithospheric mantle structure of the Eastern Dharwar craton, southern India at 1.1 Ga: study of garnet xenocrysts from kimberlites. In: Proceedings of the group discussion on kimberlites and related rocks of India. Geological Society, Bangalore, India, pp 73–74

  • Beard AD, Downes H, Hegner E, Sablukov SM, Vetrin VR, Balogh K (1998) Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites. Contrib Mineral Petrol 130:288–303. doi:10.1007/s004100050366

    Article  Google Scholar 

  • Beard AD, Downes H, Hegner E, Sablukov SM (2000) Geochemistry and mineralogy of kimberlites from the Arkhangelsk region, NW Russia: evidence for transitional kimberlite magma types. Lithos 51:47–73. doi:10.1016/S0024-4937(99)00074-2

    Article  Google Scholar 

  • Beard AD, Downes H, Mason PRD, Vetrin VR (2007) Depletion and enrichment processes in the lithospheric mantle beneath the Kola peninsula (Russia): evidence from spinel lherzolite and wehrilite xenoliths. Lithos 94:1–24. doi:10.1016/j.lithos.2006.02.002

    Article  Google Scholar 

  • Becker M, Le Roex AP (2006) Geochemistry of South African On- and Off-craton Group I and II kimberlites: petrogenesis and source region evaluation. J Petrol 47:673–703. doi:10.1093/petrology/egi089

    Article  Google Scholar 

  • Carlson RW, Irving AJ (1998) Depletion and enrichment history of sub-continental lithospheric mantle: an Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton. Earth Planet Sci Lett 126:457–472. doi:10.1016/0012-821X(94)90124-4

    Article  Google Scholar 

  • Carlson RW, Esperanca S, Svisero DP (1996) Chemical and Os isotopic study of Cretaceous potassic rocks from southern Brazil. Contrib Mineral Petrol 125:393–405. doi:10.1007/s004100050230

    Article  Google Scholar 

  • Caro G, Kopylova MG, Creaser RA (2004) The hypabyssal 5034 kimberlite of the gacho Kue cluster, Southeastern Slave craton, Northwest Territories, Canada: a granite-contaminated Group-I kimberlite. Can Mineral 42:183–207. doi:10.2113/gscanmin.42.1.183

    Article  Google Scholar 

  • Chalapathi Rao NV (2005) A petrological and geochemical reappraisal of the mesoproterozoic diamondiferous Majhgawan pipe of central India: evidence for transitional kimberlite–orangeite (group II kimberlite)–lamproite rock type. Mineral Petrol 84(2):69–106. doi:10.1007/s00710-004-0072-2

    Article  Google Scholar 

  • Chalapathi Rao NV, Miller JA, Pyle DM, Madhavan (1996) New Proterozoic K–Ar ages for some kimberlites and lamproites from the Cuddapah Basin & Dharwar craton, southern India. Precambrian Res 79:363–369. doi:10.1016/0301-9268(95)00105-0

  • Chalapathi Rao NV, Miller JA, Gibson SA, Pyle DM, Madhavan V (1999) Precise 40Ar/39Ar dating of Kotakonda kimberlite and Chelima lamproite, India: implication to the timing of mafic dyke swarm activity in the Eastern Dhawar craton. J Geol Soc India 53:425–432

    Google Scholar 

  • Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar craton, southern India. J Petrol 45(5):907–948. doi:10.1093/petrology/egg116

    Article  Google Scholar 

  • Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP, Day J (2005) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar craton, southern India: a reply. J Petrol 46:1081–1084. doi:10.1093/petrology/egi041

    Article  Google Scholar 

  • Chatterjee B (2005) Diamond-bearing carbonatite-kimberlite association from Wajrakarur kimberlite field, Andhra Pradesh. In: Proceedings of the group discussion on kimberlites and related rocks of India. Geological Society, Bangalore, India, pp 51

  • Clement CR (1982) A comparative geological study of some major kimberlite pipes in northern Cape and Orange Free State. Unpublished PhD Thesis, University of Cape Town, South Africa

  • Coe N, le Roex A, Gurney J, Pearson DG, Nowell G (2008) Petrogenesis of Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry. Contrib Mineral Petrol. doi:10.1007/s00410-008-0305-1

  • Dalton JA, Presnell DC (1998) The continuum of primary carbonatite–kimberlitic melt compositions in equilibrium lherzolite: data from the system CaO–MgO–Al2O3–SiO2–CaO at 6 GPa. J Petrol 39:1953–1964. doi:10.1093/petrology/39.11.1953

    Article  Google Scholar 

  • Dhakate MV, Nayak SS (2002) Delineation of configuration and testing of diamondiferous nature of pipe-2 of wajrakarur, Anantapur district, Andhra Pradesh. Rec Geol Surv India 135(5):24–26

    Google Scholar 

  • Eccles RD, Heaman LM, Luth RW, Creaser RA (2004) Petrogenesis of the Late Cretaceous northern Alberta kimberlite province. Lithos 76:435–459. doi:10.1016/j.lithos.2004.03.046

    Article  Google Scholar 

  • Edwards D, Rock NMS, Taylor WR, Griffin BJ, Ramsay RR (1992) Mineralogy and petrology of the Aries diamondiferous kimberlite pipe, Central Kimberley block, Western Australia. J Petrol 33:1157–1191

    Google Scholar 

  • Evensen NM, Hamilton PJ, O’Nions (1978) Rare earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212. doi:10.1016/0016-7037(78)90114-X

  • Fareeduddin (2008) Kimberlite pipes of Wajrakarur kimberlite field. In: Brochure on training course on an introduction to the petrology of diamond bearing rocks and modern methods in the exploration for, and evaluation of, primary diamond deposits. Geol Soc India 1–27

  • Faul FH (2001) Melt retention and segregation beneath mid-oceanic ridges. Nature 410:920–923. doi:10.1038/35073556

    Article  Google Scholar 

  • Foley SF (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–438. doi:10.1016/0024-4937(92)90018-T

    Article  Google Scholar 

  • Gale GH, Dabek LB, Fedikow MAF (1999) The application of rare earth element analyses in the exploration for volcanogenic massive sulfide type deposits. Explor Min Geol 6:233–252

    Google Scholar 

  • Gaffney AM, Blichert-Toft J, Nelson BK, Bizzarro M, Rosing M, Albarede F (2007) Constraints on source-forming processes of West Greenland kimberlites inferred from Hf–Nd isotope systematics. Geochim Cosmochim Acta 71:2820–2836

    Article  Google Scholar 

  • Ganguly J, Bhattacharyya PK (1987) Xenoliths in Proterozoic kimberlites from southern India: petrology and geophysical implications. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 249–266

    Google Scholar 

  • Gibson SA, Thompson RN, Leonardos OH, Dickin AP, Mitchell JG (1995) The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. J Petrol 36:189–229

    Google Scholar 

  • Girnis AP, Grey GP, Ryabchikov ID (1995) Origin of Group I A kimberlites: fluid-saturated melting experiments at 45–55 kbar. Earth Planet Sci Lett 234:283–296. doi:10.1016/0012-821X(95)00120-2

    Article  Google Scholar 

  • Gregorie M, Rabinowich M, Janse AJA (2006) Mantle mush compaction: a key to understand the mechanisms of concentration of kimberlite melts and initiation of swarms of kimberlite dykes. J Petrol 47:631–646. doi:10.1093/petrology/egi090

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Acterberg E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICP-MS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–167. doi:10.1016/S0016-7037(99)00343-9

    Article  Google Scholar 

  • Gudffinsson GH, Presnell DC (2005) Continuous gradations among primary kimberlitic, carbonatitic, melilititic and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46(8):1645–1659. doi:10.1093/petrology/egi029

    Article  Google Scholar 

  • Haggerty SE (1994) Super kimberlites: a geodynamic window to the earth’s core. Earth Planet Sci Lett 122:57–69. doi:10.1016/0012-821X(94)90051-5

    Article  Google Scholar 

  • Haggerty SE (1999) Diamond formation and kimberlite clan magmatism. Geochem Soc Spec Publ 6:105–123

    Google Scholar 

  • Haggerty SE, Birckett T (2004) Geological setting and chemistry of kimberlite clan rocks in the Dharwar craton, India. Lithos 76:535–554. doi:10.1016/j.lithos.2004.03.055

    Article  Google Scholar 

  • Harris M, Le Roex AP, Class C (2004) Geochemistry of the Uintiesberg kimberlite, South Africa: petrogenesis of an off-craton, group I kimberlite. Lithos 74:149–165. doi:10.1016/j.lithos.2004.02.001

    Article  Google Scholar 

  • Heaman LM, Kjarsgaard BA, Creaser RA (2004) The temporal evolution of North American kimberlites. Lithos 76:377–397. doi:10.1016/j.lithos.2004.03.047

    Article  Google Scholar 

  • Kaminsky FE, Sablukov SM, Sablukova LI, Channer DMD (2004) Neoproterozoic ‘anomalous’ kimberlites of Guaniamio, Venezuela: mica kimberlites of ‘isotopic transitional’ type. Lithos 76:565–590. doi:10.1016/j.lithos.2004.03.035

    Article  Google Scholar 

  • Keshav S, Corgne A, Gudfinnson GH, Bizimis M, McDonough WF, Fei Y (2005) Kimberlite petrogenesis: insights form clinopyroxene-melt partitioning experiments at 6 GPa in the CaO–MgO–Al2O3–SiO2–CO2 system. Geochim Cosmochim Acta 69:2829–2845. doi:10.1016/j.gca.2005.01.012

    Article  Google Scholar 

  • Khazan Y, Fialko Y (2005) Why do kimberlites from different provinces have similar trace element patterns? Geochem Geophys Geosyst 6:Q10002. doi:10.1029/2005GC000919

    Article  Google Scholar 

  • Kopylova MG, Matveev S, Raudsepp M (2007) Searching for parental kimberlite melt. Geochim Cosmochim Acta 71:3616–3629. doi:10.1016/j.gca.2007.05.009

    Article  Google Scholar 

  • Le Roex AP, Bell DR, Davis P (2003) Petrogenesis of Group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286. doi:10.1093/petrology/egg077

    Article  Google Scholar 

  • Lynn M (2005) The discovery of kimberlites in the Gulburga and Raichur districts of Karnataka. In: Proceedings of the group discussion on kimberlites and related rocks of India. Geological Society, Bangalore, India, pp 48–49

  • Masun KM, Doyle BJ, Ball S, Walker S (2004) The geology and mineralogy of the Anuri kimberlite, Nunavut, Canada. Lithos 76:75–97. doi:10.1016/j.lithos.2004.03.022

    Article  Google Scholar 

  • McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72. doi:10.1016/0012-821X(89)90167-2

    Article  Google Scholar 

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Plenum Press, New York, 406 pp

  • Mitchell RH (1995a) Kimberlites: orangeites and related rocks. Plenum Press, New York, p 406

    Google Scholar 

  • Mitchell RH (1995b) Melting experiments on a sanidine phlogopite lamproite at 4–7 GPa and their bearing on the sources of lamproite magmas. J Petrol 36:1455–1474

    Google Scholar 

  • Mitchell RH (1997) Kimberlites, orangeites, lamproites, melilitites, and minettes: a petrographic atlas. Almaz Press, Thunder Bay, 243 pp

  • Mitchell RH (2008) Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J Volc Geotherm Res. doi:10.1016/j.jvolgeores.2007.12.024

  • Mukherjee A, Sravan Kumar CH, Krishna Reddy K, Siddique SN, Chaturvedi LN (2007) Two new kimberlites in Bommaganapalli area, Anantapur district, Andhra Pradesh, based on systematic stream sediment sampling and ground magnetic survey. J Geol Soc India 69:625–640

    Google Scholar 

  • Murthy DSN, Dayal AM (2000) Geochemical characteristics of kimberlite rock of the Anantapur and Mahbubnagar districts, Andhra Pradesh, South India. J Asian Earth Sci 19:311–310. doi:10.1016/S1367-9120(00)00014-6

    Article  Google Scholar 

  • Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediment. J Petrol 43:981–1001. doi:10.1093/petrology/43.6.981

    Article  Google Scholar 

  • Nayak SS, Kudari SAD (1999) Discovery of diamond-bearing kimberlites in Kalyandurg area, Anantapur district, Andhra Pradesh. Curr Sci 76:1077–1079

    Google Scholar 

  • Naqvi SM (2005) Geology and evolution of the Indian Plate (from Hadean to Holocene 4 Ga to 4 Ka). Capital Publishers, New Delhi, 450 pp

  • Nehru CE, Reddy TAK (1989) Ultramafic xenoliths from Vajrakarur kimberlites, India. Geol Soc Austral Spec Publ 14:745–758

    Google Scholar 

  • Nowell GM, Pearson DG, Bell DR, Carlson RW, Smith CB, Kempton PDM et al (2004) Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions. J Petrol 45:1583–1612. doi:10.1093/petrology/egh024

    Article  Google Scholar 

  • Patel SC, Ravi S, Thakur SS, Rao TK, Subbarao KV (2006) Eclogite xenoliths from Wajrakarur kimberlites, southern India. Mineral Petrol 88:363–380. doi:10.1007/s00710-006-0150-8

    Article  Google Scholar 

  • Paton C, Hergt JM, Phillips D, Woodhead JD (2007) New insights into the genesis of Indian kimberlites from the Dharwar craton via in situ Sr isotope analysis of groundmass perovskite. Geology 35:1011–1014. doi:10.1130/G24040A.1

    Article  Google Scholar 

  • Paul DK, Nayak SS, Pant NC (2006) Indian kimberlites and related rocks: petrology and geochemistry. J Geol Soc India 67:328–355

    Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2004) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on geochemistry, vol 2: the mantle and core. Elsevier–Pergamon, Oxford, pp 171–276

  • Price SE, Russell JK, Kopylova MG (2000) Primitive magma from the Jericho Pipe, N.W.T., Canada: constraints on primary kimberlite melt chemistry. J Petrol 41:789–808. doi:10.1093/petrology/41.6.789

    Article  Google Scholar 

  • Ringwood AR, Kesson SE, Hibberson W, Ware N (1992) Origin of kimberlites their related magmas. Earth Planet Sci Lett 113:521–538. doi:10.1016/0012-821X(92)90129-J

    Article  Google Scholar 

  • Rogers NW, Hawkesworth CJ, Palacz ZA (1992) Phlogopite in the generation of melilitites from Namaqualand, South Africa and implications for element fractionation processes in the upper mantle. Lithos 28:347–365. doi:10.1016/0024-4937(92)90014-P

    Article  Google Scholar 

  • Rombouts L (2003) Assessing the diamond potential of kimberlites from discovery to evaluation and bulk sampling. Miner Depos 38:496–504. doi:10.1007/s00126-002-0313-4

    Article  Google Scholar 

  • Schmidberger SS, Simonetti A, Francis D (2001) Sr–Nd–Pb isotope systematics of mantle xenoliths from Somerset island kimberlites—evidence for lithospheric straitification beneath Arctic Canada. Geochim Cosmochim Acta 65:521–538. doi:10.1016/S0016-7037(01)00687-1

    Article  Google Scholar 

  • Schmidt KH, Bottazi P, Vannucci R, Mengel K (1999) Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth Planet Sci Lett 168:287–300. doi:10.1016/S0012-821X(99)00056-4

    Article  Google Scholar 

  • Schulze DJ (2003) A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos 71:195–213. doi:10.1016/S0024-4937(03)00113-0

    Article  Google Scholar 

  • Scott-Smith BH (2007) Addendum in ‘Lamproites and kimberlites in India’. J Geol Soc India 69:443–465

    Google Scholar 

  • Scott-Smith BH, Skinner EMW (1984) A new look at the Prairie Creek, Arkansas. In: Kornprobst J (ed) Kimberlites I: kimberlites and related rocks. Proceedings of the third international kimberlite conference, developments. Petrology 1:255–284

  • Smith CB, Gurney JJ, Skinner EMW, Clement CR, Ebrahim N (1985) Geochemical character of the southern African kimberlites: a new approach based on isotopic constraints. Trans Geol Soc S Afr 88:267–280

    Google Scholar 

  • Sravan Kumar Ch, Mukherjee A, Vishwakarma RK (2004) Discovery of a new kimberlite pipe using multidisciplinary approach at Kalyandurg, Anantapur district, Andhra Pradesh. J Geol Soc India 64:813–817

    Google Scholar 

  • Sumino H, Kaneoka I, Matsufuji K, Sobolov A (2006) Deep mantle origin of and kimberlite magmas revealed by neon isotopes. Geophys Res Lett 33:L16318. doi:10.1029/2006GL027144

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins (Geological Society of London, Special Publication 42). Geological Society of London, London, pp 313–345

    Google Scholar 

  • Tainton KM, McKenzie D (1994) The generation of kimberlites, lamproites and their source rocks. J Petrol 35:787–817

    Google Scholar 

  • Taylor WR, Tompkins LA, Haggerty SE (1994) Comparative geochemistry of West African kimberlites: evidence for a micaceous kimberlite end member of sub lithospheric origin. Geochim Cosmochim Acta 58:4017–4037. doi:10.1016/0016-7037(94)90264-X

    Article  Google Scholar 

Download references

Acknowledgments

Kimberlite samples were collected during a field trip, jointly organised by the Geological Society of India and Geological Survey of India, during November, 2005, to the Wajrakarur kimberlite field. We offer our grateful thanks to the officials of both these organisations for their excellent hospitality and help. We also thank Geological Society of India for inviting us to attend the ‘Group Discussion on Kimberlites and related rocks,’ of which this field trip formed a part, and for extending financial support. Helpful comments by Dave Pyle (Department of Earth Sciences, Oxford), Ian Osborne (Department of Earth Sciences, The Open University, Milton Keynes, UK) and two anonymous reviewers together with editorial suggestions by Prof. T.L. Grove significantly improved the presentation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chalapathi Rao.

Additional information

Communicated by T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalapathi Rao, N.V., Srivastava, R.K. Petrology and geochemistry of diamondiferous Mesoproterozoic kimberlites from Wajrakarur kimberlite field, Eastern Dharwar craton, southern India: genesis and constraints on mantle source regions. Contrib Mineral Petrol 157, 245–265 (2009). https://doi.org/10.1007/s00410-008-0332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0332-y

Keywords

Navigation