Skip to main content

Advertisement

Log in

The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure–temperature–time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Guarguaraz Complex in West Argentina formed during collision between the microplate Chilenia and South America. It is composed of neritic clastic metasediments with intercalations of metabasic and ultrabasic rocks of oceanic origin. Prograde garnet growth in metapelite and metabasite occurred between 1.2 GPa, 470°C and 1.4 GPa, 530°C, when the penetrative s2-foliation was formed. The average age of garnet crystallization of 390 ± 2 Ma (2σ) was determined from three four-point Lu–Hf mineral isochrones from metapelite and metabasite samples and represents the time of collision. Peak pressure conditions are followed by a decompression path with slight heating at 0.5 GPa, 560°C. Fluid release during decompression caused equilibration of mineral compositions at the rims and also aided Ar diffusion. An 40Ar/39Ar plateau age of white mica at 353 ± 1 Ma (1σ) indicates the time of cooling below 350–400°C. These temperatures were attained at pressures of 0.2–0.3 GPa, indicative of an average exhumation rate of ≥1 mm/a for the period 390–353 Ma. Late hydrous influx at 0.1–0.3 GPa caused pervasive growth of sericite and chlorite and reset the Ar/Ar ages of earlier coarse-grained white mica. At 284–295 Ma, the entire basement cooled below 280°C (fission track ages of zircon) after abundant post-collisional granitoid intrusion. The deeply buried epicontinental sedimentary rocks, the high peak pressure referring to a low metamorphic geotherm of 10–12°C/km, and the decompression/heating path are characteristics of material buried and exhumed within a (micro) continent–continent collisional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anczkiewicz R, Szczepański J, Mazur S, Storey C, Crowley Q, Villa IM, Thirlwall MF, Jeffries TE (2007) Lu-Hf geochronology and trace element distribution in garnet: implications for uplift and exhumation of ultra-high pressure granulites in the Sudetes, SW Poland. Lithos 95:363–380

    Article  Google Scholar 

  • Astini R, Martina F, Ezpeleta M, Dávila F, Cawood P (2009) Chronology from rifting to foreland basin in the Paganzo Basin (Argentina), and a reappraisal on the “Eo- and Neohercynian” tectonics along Western Gondwana. Abstracts XII Congreso Geológico Chileno Santiago S9-010:179

    Google Scholar 

  • Basei M, Ramos VA, Vujovich GI, Poma St (1998) El basamento metamorfico de la Cordillera Frontal de Mendoza: nuevos datos geocronologicos e isotopicos. Actas X Congreso Latinoamericano de Geología y VI Congreso Nacional de Geología Económica II:412–417

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29:445–522

    Google Scholar 

  • Berman RG (1990) Mixing properties of Ca-Mg-Fe-Mn garnets. Am Mineral 75:328–344

    Google Scholar 

  • Bjerg EA, Gregori DA, Losada Calderón A, Labudía CH (1990) Las metamorfitas del faldeo oriental de la Cuchilla de Guarguaraz, Cordillera Frontal, Provincia de Mendoza. Rev Asoc Geol Argent 45:234–245

    Google Scholar 

  • Bousquet R (2008) Metamorphic heterogeneities within a same HP unit: overprint effect or metamorphic mix? Lithos 103:46–69

    Article  Google Scholar 

  • Bousquet R, Oberhänsli R, Goffé B, Wiederkehr M, Koller F, Schmid SM, Schuster R, Engi M, Berger A, Martinotti G (2008) Metamorphism of metasediments in the scale of an orogen: a key to the tertiary geodynamic evolution of the Alps. In: Siegesmund S, Fügenschuh, B, Froitzheim N (eds) Tectonic aspects of the alpine-dinaride-carpathian system. Geological Society, London, Special Publications 298:393–412

  • Brix MR, Stöckhert B, Seidel E, Theye T, Thomson SN, Küster M (2002) Thermobarometric data from a fossil zircon partial annealing zone in high pressure-low temperature rocks of eastern and central Crete, Greece. Tectonophysics 349:309–326

    Article  Google Scholar 

  • Brown TH, Berman RG, Perkins EH (1989) Ge0-Calc: software package for calculation and display of pressure-temperature-composition phase diagrams using an IBM or compatible personal computer. Comput Geosci 14:279–289

    Google Scholar 

  • Caminos R (1979) Cordillera frontal. Segundo Simp Geol Reg Argent 1:397–454

    Google Scholar 

  • Caminos R (1993) El basamento metamórfico proterozoico-paleozoico inferior. In: Ramos VA (ed) Geología y recursos naturales de Mendoza. 12. Congreso Geológico Argentino y 2. Congreso de Exploraciónde Hidrocarburos, Buenos Aires, Relatorio 1:11–19

  • Caminos R, Cordani U, Linares E (1979) Geología y geocronología de las rocas metamórficas y eruptivas de la Precordillera y Cordillera Frontal de Mendoza. Actas 2. Congreso Geológico Chileno Santiago 1:43–61

    Google Scholar 

  • Connolly JAD (1990) Multivariable phase diagrams; an algorithm based on generalized thermodynamics. Am J Sci 290:666–718

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Article  Google Scholar 

  • Davis J, Roeske S, McClelland W, Snee L (1999) Closing the ocean between the Precordillera terrane and Chilenia: early Devonian ophiolite emplacement and deformation in the southwest Precordillera. In: Ramos VA, Keppie J (eds) Laurentia and Gondwana connections before Pangea. Geol Soc Am Spec Paper 336:115–138

  • Davis J, Roeske S, McClelland W, Kay SM (2000) Implications of mafic and ultramafic crustal fragments of the SW Precordillera terrane for early Paleozoic tectonic models of Western Argentina. Geology 28:171–174

    Article  Google Scholar 

  • Evans BW (1990) Phase relations of epidote-blueschists. Lithos 24:3–23

    Article  Google Scholar 

  • Faccenda M, Gerya TV, Chakraborty S (2008) Styles of postsubduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos 103:257–287

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary feldspar modeling such features are of continental extent and must be due and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Galbraith RF, Laslett GM (1993) Statistical models for mixed fission track ages. Nucl Tracks 21:459–470

    Google Scholar 

  • Gerbi C, Roeske SM, Davis JS (2002) Geology and structural history of the southwest Precordillera margin, northern Mendoza Province, Argentina. J South Am Earth Sci 14:821–835

    Article  Google Scholar 

  • Gerya TV, Perchuk LL, Maresch WV, Willner AP (2004) Inherent gravitational instability of hot continental crust: implication for doming and diapirism in granulite facies terrains. In: Whitney DI, Teyssier C, Siddoway CS (eds) Gneiss domes in orogeny. Geol Soc Am Spec Paper 380:97–115

  • Glodny J, Lohrmann J, Echtler H, Gräfe K, Seifert W, Collao S, Figueroa O (2005) Internal dynamics of a paleoaccretionary wedge: insights from combined isotope tectonochronology and sandbox modelling of the south-central Chilean fore-arc. Earth Planet Sci Lett 231:23–39

    Article  Google Scholar 

  • Gregori DA, Fernandez-Turiel JL, Lopez-Soler A, Petford N (1996) Geochemistry of Upper Palaeozoic-Lower Triassic granitoids of the Central Frontal Cordillera (33°10–33°45), Argentina. J South Am Earth Sci 9:141–151

    Article  Google Scholar 

  • Hervé F (1988) Late Paleozoic subduction and accretion in Southern Chile. Episodes 11:183–188

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorphic Geol 16:309–343

    Article  Google Scholar 

  • Holland TJB, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501

    Article  Google Scholar 

  • Hurford AJ (1990) Standardization of fission track dating calibration: recommended by the Fission Track Working Group of the I.U.G.S. Subcommision on Geochronology. Chem Geol (Isot Geosci Sect) 80:171–178

  • Hurford AJ, Green PF (1983) The zeta age calibration of fission-track dating. Isotope Geosci 1:285–317

    Google Scholar 

  • Ishizuka O, Yuasa M, Uto K (2002) Evidence of porphyry copper-type hydrothermal activity from a submerged remnant back-arc volcano of the Izu-Bonin arc: implication for the volcanotectonic history of back-arc seamounts. Earth Planet Sci Lett 198:381–399

    Article  Google Scholar 

  • Konrad-Schmolke M, Zack TH, O‘Brien PJ, Jacob DE (2008) Combined thermodynamic and rare earth element modelling of garnet growth during subduction: examples from ultrahigh-pressure eclogite of the Western Gneiss Region, Norway. Earth Planet Sci Lett 272:488–498

    Article  Google Scholar 

  • Lagos M, Scherer EE, Tomaschek F, Münker C, Keiter M, Berndt J, Ballhaus C (2007) High precision Lu–Hf geochronology of Eocene eclogite-facies rocks from Syros, Cyclades. Greece Chem Geol 243:16–35

    Google Scholar 

  • Lopez VL, Gregori DA (2004) Provenance and evolution of the Guarguaraz Complex, Cordillera Frontal, Argentina. Gondwana Res 7:1197–1208

    Article  Google Scholar 

  • Lopez VL, Escayola M, Azarevich MB, Pimentel MM, Tassinari C (2009) The Guarguaraz Complex and the Neoproterozoic-Cambrian evolution of southwestern Gondwana: geochemical signatures and geochronological constraints. J South Am Earth Sci 28:333–344

    Article  Google Scholar 

  • Ludwig K (2007) Isoplot/Ex version 3.41b, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4

  • Massonne HJ (1995a) Experimental and petrogenetic study of UHPM. In: Coleman RG, Wang X (eds) Ultrahigh pressure metamorphism. Cambridge University Press, Cambridge, pp 33–95

    Chapter  Google Scholar 

  • Massonne HJ (1995b) P-T evolution of metavolcanics from the southern Taunus mountains. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern Europe. Springer, Berlin-Heidelberg, pp 132–137

    Google Scholar 

  • Massonne HJ (1997) An improved thermodynamic solid solution model for natural white-micas and its application to the geothermobarometry of metamorphic rocks. Geological Survey of Finland Guide 46, Mineral equilibria and databases, Abstracts:49

  • Massonne HJ, Calderón M (2008) P-T evolution of metapelites from the Guarguaraz Complex, Argentina: evidence for Devonian) crustal thickening close to the western Gondwana margin. Rev Geol Chile 35:215–231

    Article  Google Scholar 

  • Massonne HJ, Szpurka Z (1997) Thermodynamic properties of white-mica on the basis of high-pressure experiments in the systems K2O-MgO-Al2O3-Si2O-H2O and K2O-FeO-Al2O3-Si2O-H2O. Lithos 41:229–250

    Article  Google Scholar 

  • Massonne HJ, Willner AP (2008) Phase relations and dehydration behaviour of psammopelite and mid-ocean ridge basalt at very-low-grade to low-grade metamorphic conditions. Eur J Mineral 20:867–879

    Article  Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar-method. Oxford University Press, Oxford, 269 pp

  • McMullin DW, Berman RG, Greenwood HJ (1991) Calibration of the SGAM thermometer for pelitic rocks using data from equilibrium experiments and natural assemblages. Can Mineral 29:889–908

    Google Scholar 

  • Mpodozis C, Kay SM (1992) Late Paleozoic to Triassic evolution of the Gondwana margin: evidence from Chilean Cordilleran batholiths (28°–31°S). Bull Geol Soc Am 104:999–1024

    Article  Google Scholar 

  • Münker C, Weyer S, Scherer EE, Mezger K (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem Geophys Geosyst. doi:10.1029/2001GC000183 (G3) 2

  • Ogg JG, Ogg G, Gradstein FM (2008) The concise geological time scale. Cambridge University Press, Cambridge, 177 pp

  • Patchett PJ, Tatsumoto M (1980) A routine high-precision method for Lu–Hf isotope geochemistry and geochronology. Contrib Mineral Petrol 75:263–267

    Article  Google Scholar 

  • Polanski J (1964) Descripción Geológica de la Hoja 24ª-b Cerro Tupungato (Provincia de Mendoza). Dirección Nacional de Geología y Minería, Boletín 98: 94 p. Buenos Aires

  • Polanski J (1972) Descripción Geológica de la Hoja 25a Volcán San José (Provincia de Mendoza). Dirección Nacional de Geología y Minería, Boletín 128: 114 p. Buenos Aires

  • Powell R, Holland TJB (1999) Relating formulations of the thermodynamics of mineral solid solutionns: activity modeling of pyroxenes, amphiboles and micas. Am Mineral 84:1–14

    Google Scholar 

  • Rahn M, Brandon M, Batt GE, Garver JI (2004) A zero-damage model for fission-track annealing in zircon. Am Mineral 89:473–484

    Google Scholar 

  • Ramírez-Sánchez E, Deckart K, Hervé F (2007) Significance of 40Ar–39Ar encapsulation ages of metapelites from late Palaeozoic metamorphic complexes of Aysén, Chile. Geol Mag 145:389–396

    Google Scholar 

  • Ramos VA (2000) The southern central Andes. In: Cordani UG, Milani EJ, Thomaz Filho, A, Campos DA (eds) Tectonic evolution of South America. Inter Geol Congress Rio de Janeiro 561–604, 31

  • Ramos VA (2009) Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. In: Kay SM, Ramos VA, Dickinson WR (eds) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision. Geol Soc Am Memoir 204:31–65

  • Ramos VA, Jordan TE, Allmendinger RW, Mpodozis C, Kay SM, Cortés JM, Palma MA (1986) Paleozoic terrains of the central Argentine Chilean Andes. Tectonics 5:855–880

    Article  Google Scholar 

  • Richter PP, Ring U, Willner AP, Leiss B (2007) Structural contacts in subduction complexes and their tectonic significance: the late Palaeozoic coastal accretionary wedge of central Chile. J Geol Soc London 164:203–214

    Article  Google Scholar 

  • Ring U, Brandon MT (1999) Ductile deformation and mass loss in the Franciscan subduction complex: implications for exhumation processes in accretionary wedges. In: Ring U, Brandon MT, Lister GS, Willett SD (eds) Exhumation processes: normal faulting, ductile flow and erosion. Geol Soc London Spec Publ 154:55–86

  • Ruviños MA, Gregori DA, Bjerg EA (1997) Condiciones de P y T del basamento metamórfico de la Cordillera Frontal de Mendoza, Argentina. Actas 8. Congreso Geológico Chileno Antofagasta 2:1512–1516

    Google Scholar 

  • Scherer EE, Cameron KL, Blichert-Toft J (2000) Lu–Hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions. Geochim Cosmochim Acta 64:3413–3432

    Article  Google Scholar 

  • Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium–hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Schmidt A, Weyer S, Mezger K, Scherer EE, Yilin X, Hoefs J, Brey G (2008) Rapid eclogitisation of the Dabie-Sulu UHP terrane: constraints from Lu-Hf garnet geochronology. Earth Planet Sci Lett 273:203–213

    Article  Google Scholar 

  • Skora S, Baumgartner LP, Mahlen NJ, Johnson CM, Pilet S, Hellebrand E (2006) Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu-Hf and Sm-Nd geochronology. Contrib Mineral Petrol 152:703–720

    Article  Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  • Tagami T, Galbraith RF, Yamada R, Laslett GM (1998) Revised annealing kinetics of fission tracks in zircon and geological implications. In: Van den Haute P, De Corte F (eds) Advances in fission-track geochronology. Kluwer Academic Publishers, Dordrecht, pp 99–112

    Google Scholar 

  • Thomson SN, Ring U (2006) Thermochronologic evaluation of postcollision extension in the Anatolide Orogen, western Turkey. Tectonics 25:TC3005. doi:10.1029/2005TC001833

  • Uto K, Ishizuka O, Matsumoto A, Kamioka H, Togashi S (1997) Laser-heating 40Ar/39Ar dating system of the Geological Survey of Japan: system outlines and preliminary results. Bull Geol Surv Jpn 48:23–46

    Google Scholar 

  • Villa IM (1998) Isotopic closure. Terra Nova 10:42–47

    Article  Google Scholar 

  • Vujovich GI, Gregori D (2002) Cordón del Portillo, Cordillera Frontal, Mendoza: Caracterización geoquímica de las metamorfitas. Actas 15. Congreso Geológico Argentino Calafate:1–6

  • Wiederkehr M, Sudo M, Bousquet R, Berger A, Schmid SM (2009) Alpine orogenic evolution from subduction to collisional thermal overprint: the 40Ar/39Ar age constraints from the Valaisan Ocean, Central Alps Tectonics 28:TC6009. doi:10.1029/2009TC002496

  • Willner AP (2005) Pressure-temperature evolution of an Upper Paleozoic paired metamorphic belt in Central Chile (34°–35°30′S). Journal of Petrology 46:1805–1833

    Article  Google Scholar 

  • Willner AP, Krohe A, Maresch WV (2000) Interrelated PTtd-paths in the Variscan Erzgebirge Dome (Saxony/Germany): constraints for the rapid exhumation dynamics of HP-HT rocks from the root zone of a collisional orogen. Int Geol Rev 42:64–85

    Article  Google Scholar 

  • Willner AP, Sebazungu E, Gerya TV, Maresch WV, Krohe A (2002) Numerical modeling of PT-paths related to rapid exhumation of high-pressure rocks from the crustal root in the Variscan Erzgebirge Dome Saxony/Germany. J Geodyn 33:281–314

    Article  Google Scholar 

  • Willner AP, Thomson SN, Kröner A, Wartho JA, Wijbrans J, Hervé F (2005) Time markers for the evolution and exhumation history of a late Palaeozoic paired metamorphic belt in central Chile (34°–35°30′S). J Petrol 46:1835–1858

    Article  Google Scholar 

  • Willner AP, Gerdes A, Massonne HJ (2008) History of crustal growth and recycling at the Pacific convergent margin of South America at latitudes 29°–36°S revealed by a U-Pb and Lu-Hf isotope study of detrital zircon from late Paleozoic accretionary systems. Chem Geol 253:114–129

    Article  Google Scholar 

  • Willner AP, Sepúlveda FA, Hervé F, Massonne HJ, Sudo M (2009a) Conditions and timing of pumpellyite-actinolite facies metamorphism in the Early Mesozoic frontal accretionary prism of the Madre de Dios Archipelago (50°20′S; S-Chile). J Petrol 50:2127–2155

    Article  Google Scholar 

  • Willner AP, Massonne HJ, Gerdes A, Hervé F, Sudo M, Thomson S (2009b) The contrasting evolution of collisional and coastal accretionary systems between the latitudes 30°S and 35°S: evidence for the existence of a Chilenia microplate. Abstracts XII Congreso Geológico Chileno Santiago S9_099:223

Download references

Acknowledgments

This work was financed by Deutsche Forschungsgemeinschaft (grant Ma1160/24) and the German–Chilean BMBF–CONICYT co-operation project (CHL07/025). Reviews by S.M. Kay and G. Topuz helped to improve this paper considerably. Careful editorial handling by T. Grove is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne P. Willner.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 397 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willner, A.P., Gerdes, A., Massonne, HJ. et al. The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure–temperature–time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina). Contrib Mineral Petrol 162, 303–327 (2011). https://doi.org/10.1007/s00410-010-0598-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0598-8

Keywords

Navigation