Skip to main content

Advertisement

Log in

Exhumation of the UHP Tso Morari eclogite as a diapir rising through the mantle wedge

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Ultrahigh-pressure (UHP) rocks such as the coesite-bearing eclogites, occurring as boudins within felsic gneisses of the Tso Morari dome in northwestern Himalayas, originated through subduction of the northern continental margin of India during its early Eocene collision with the Kohistan–Ladakh arc. These rocks are believed to be exhumed through a low-viscosity channel along the top surface of the subducting slab. However, details of the exhumation mechanism are poorly known. We present new constraints on the PT evolution of hydrous and carbonate-rich samples of the Tso Morari eclogite between 2.2–2.3 GPa/400–425 °C and ~0.4 GPa/450 °C using thermobarometry and calculated PT\({\text{M}}_{{{\text{CO}}_{ 2} }}\) phase equilibria. Our results indicate that the eclogites were strongly heated at high pressures from 400–425 °C at 2.2–2.3 GPa to 670–720 °C at 1.8–1.9 GPa during the early stages of exhumation. Diffusion modeling of Ca variation across the core–rim interface of garnet indicates that the heating stage lasted only <0.1 Myr, in accordance with geochronological constraints and fast exhumation rates. Our PT path is at odds with exhumation of the eclogites along a subduction channel as model calculations indicate that the intermediate PT conditions of 1.8–1.9 GPa/670–720 °C are not achieved along the subducting slab. Instead, the constrained PT conditions are consistent with heating within the mantle wedge overlying the subducting slab. Therefore, we conclude that the Tso Morari eclogites were possibly exhumed as part of a low-density, felsic diapir rising through the mantle wedge. Based on low viscosity values (1.7 × 1019–5.0 × 1019 Pa s) of mantle wedges associated with modern subduction zones, the calculated exhumation rate for the Tso Morari eclogite is extremely fast (29–147 mm/yr) and at par with that constrained for other northwestern Himalayan UHP rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Giere R, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18:551–567. doi:10.1127/0935-1221/2006/0018-0551

    Article  Google Scholar 

  • Armstrong JT (1995) CITZAF—a package for correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin-films and particles. Microbeam Anal 4:177–200

    Google Scholar 

  • Auzanneau E, Schmidt MW, Vielzeuf D, Connolly JAD (2010) Titanium in phengite: a geobarometer for high temperature eclogites. Contrib Mineral Petrol 159:1–24. doi:10.1007/s00410-009-0412-7

    Article  Google Scholar 

  • Behn MD, Kelemen PB, Hirth G, Hacker BR, Massonne H-J (2011) Diapirs as the source of the sediment signature in arc lavas. Nature Geosci 4:641–646. doi:10.1038/ngeo1214

    Article  Google Scholar 

  • Berthelsen A (1953) On the geology of the Rupshu District, N.W. Himalaya. Medd Dansk Geol Foren 12:350–415. http://2dgf.dk/xpdf/bull-1953-12-3-350-414.pdf

  • Billen MI, Gurnis M (2001) A low viscosity wedge in subduction zones. Earth Planet Sci Lett 193:227–236. doi:10.1016/S0012-821X(01)00482-4

    Article  Google Scholar 

  • Bohlen SR, Boettcher AL (1982) The quartz–coesite transformation: a precise determination and the effects of other components. J Geophys Res 87:7073–7078. doi:10.1029/JB087iB08p07073

    Article  Google Scholar 

  • Bouilhol P, Jagoutz O, Hanchar JM, Dudas FO (2013) Dating the India–Eurasia collision through arc magmatic records. Earth Planet Sci Lett 366:163–175. doi:10.1016/j.epsl.2013.01.023

    Article  Google Scholar 

  • Bundy FP (1980) The PT phase and reaction diagram for elemental carbon. J Geophys Res 85:6930–6936. doi:10.1029/JB085iB12p06930

    Article  Google Scholar 

  • Chakraborty S, Ganguly J (1992) Cation diffusion in aluminosilicate garnets—experimental determination in spressartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib Mineral Petrol 111:74–86. doi:10.1007/BF00296579

    Article  Google Scholar 

  • Cheng H, Nakamura E, Kobayashi K, Zhou Z (2007) Origin of atoll garnets in eclogites and implications for the redistribution of trace elements during slab exhumation in a continental subduction zone. Am Mineral 92:1119–1129. doi:10.2138/am.2007.2343

    Article  Google Scholar 

  • Cloos M, Shreve RL (1988) Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion. Pure Appl Geophys 128:501–545. doi:10.1007/BF00874549

    Article  Google Scholar 

  • Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet–phengite thermobarometers. J Metamorph Geol 20:683–696. doi:10.1046/j.1525-1314.2002.00395.x

    Article  Google Scholar 

  • Connolly JAD, Petrini K (2002) An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J Metamorph Geol 20:697–708. doi:10.1046/j.1525-1314.2002.00398.x

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Oxford University Press, Oxford 414 p

    Google Scholar 

  • de Sigoyer J, Guillot S, Lardeaux JM, Mascle G (1997) Glaucophane-bearing eclogites in the Tso Morari dome (eastern Ladakh, NW Himalaya). Eur J Mineral 9:1073–1083. http://eurjmin.geoscienceworld.org/content/9/5/1073.full.pdf

  • de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G (2000) Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: multichronology of the Tso Morari eclogites. Geology 28:487–490. doi:10.1130/0091-7613

    Article  Google Scholar 

  • de Sigoyer J, Guillot S, Dick P (2004) Exhumation of the ultrahigh-pressure Tso Morari unit in eastern Ladakh (NW Himalaya): a case study. Tectonics 23:TC3003. doi:10.1029/2002TC001492

    Article  Google Scholar 

  • Diener JFA, Powell R, White RW, Holland TJB (2007) A new thermodynamic model for clino-and orthoamphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O. J Metamorph Geol 25:631–656. doi:10.1111/j.1525-1314.2007.00720.x

    Article  Google Scholar 

  • Donaldson DG, Webb AAG, Menold CA, Kylander-Clark ARC, Hacker BR (2013) Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology 41:835–838. doi:10.1130/G33699.1

    Article  Google Scholar 

  • Epard J-L, Steck A (2008) Structural development of the Tso Morari ultra-high pressure nappe of the Ladakh Himalaya. Tectonophysics 451:242–264. doi:10.1016/j.tecto.2007.11.050

    Article  Google Scholar 

  • Faccenda M, Gerya TV, Chakraborty S (2008) Styles of post-subduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos 103:257–287. doi:10.1016/j.lithos.2007.09.009

    Article  Google Scholar 

  • Ganguly J, Cheng WJ, Chakraborty S (1998) Cation diffusion in aluminosilicate garnets: experimental determination in pyrope–almandine diffusion couples. Contrib Mineral Petrol 131:171–180. doi:10.1007/s004100050386

    Article  Google Scholar 

  • Gerya TV, Stöckhert B, Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics 21(6):1056. doi:10.1029/2002TC001406

    Article  Google Scholar 

  • Gerya TV, Yuen DA, Sevre EOD (2004) Dynamical causes for incipient magma chambers above slabs. Geology 32:89–92. doi:10.1130/G20018.1

    Article  Google Scholar 

  • Green ECR, Holland TJB, Powell R (2007) An order–disorder model for omphacitic pyroxenes in the system jadeite–diopside–hedenbergite–acmite, with applications to eclogite rocks. Am Mineral 92:1181–1189. doi:10.2138/am.2007.2401

    Article  Google Scholar 

  • Guillot S, de Sigoyer J, Lardeaux JM, Mascle G (1997) Eclogitic metasediments from the Tso Morari area (Ladakh Himalaya): evidence for continental subduction during India–Asia convergence. Contrib Mineral Petrol 128:197–212. doi:10.1007/s004100050303

    Article  Google Scholar 

  • Guillot S, Hattori KH, de Sigoyer J, Nägler T, Auzende A-L (2001) Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth Planet Sci Lett 193:115–127. doi:10.1016/S0012-821X(01)00490-3

    Article  Google Scholar 

  • Hacker B, Gerya T (2013) Paradigms, new and old, for ultrahigh-pressure tectonism. Tectonophysics 603:79–88. doi:10.1016/j.tecto.2013.05.026

    Article  Google Scholar 

  • Hacker BR, Kelemen PB, Behn MD (2011) Differentiation of the continental crust by relamination. Earth Planet Sci Lett 307:501–516. doi:10.1016/j.epsl.2011.05.024

    Article  Google Scholar 

  • Holland TJB, Powell R (1991) A compensated Redlich–Kwong (CORK) equation for volumes and fugacities of carbon dioxide and water in the range 1 bar to 50 kbar and 100–1600°C. Contrib Mineral Petrol 109:265–273. doi:10.1007/BF00306484

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343. doi:10.1111/j.1525-1314.1998.00140.x

    Article  Google Scholar 

  • Holland TJB, Powell R (2001) Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J Petrol 42(4):673–683. doi:10.1093/petrology/42.4.673

    Article  Google Scholar 

  • Holland TJB, Barker J, Powell R (1998) Mixing properties and activity–composition relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. Eur J Mineral 10:395–406. http://eurjmin.geoscienceworld.org/content/10/3/395.full.pdf

  • Kaneko Y, Katayama I, Yamamoto H, Misawa K, Ishikawa M, Rehman HU, Kausar AB, Shiraishi K (2003) Timing of Himalayan ultrahigh-pressure metamorphism: sinking rate and subduction angle of the Indian continental crust beneath Asia. J Metamorph Geol 21:589–599. doi:10.1046/j.1525-1314.2003.00466.x

    Article  Google Scholar 

  • Konrad-Schmolke M, O’Brien PJ, de Capitani C, Carswell DA (2008) Garnet growth at high- and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos 103:309–332. doi:10.1016/j.lithos.2007.10.007

    Article  Google Scholar 

  • Leake B, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch H, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Yoizhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on new minerals and mineral names. Can Mineral 35:219–246. http://canmin.geoscienceworld.org/content/35/1/219.full.pdf

  • Leech ML, Singh TS, Jain AK, Klemperer SL, Manickavasagam RM (2005) The onset of India–Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett 234:83–97. doi:10.1016/j.epsl.2005.02.038

    Article  Google Scholar 

  • Little TA, Hacker BR, Gordon SM, Baldwin SL, Fitzgerald PG, Ellis S, Korchinski M (2011) Diapiric exhumation of Earth’s youngest (UHP) eclogites in the gneiss domes of the D’Entrecasteaux Islands, Papua New Guinea. Tectonophysics 510:39–68. doi:10.1016/j.tecto.2011.06.006

    Article  Google Scholar 

  • Mahéo G, Bertrand H, Guillot S, Villa IM, Keller F, Capiez P (2004) The South Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys. Chem Geol 203:273–303. doi:10.1016/j.chemgeo.2003.10.007

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman L, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550. doi:10.1180/minmag.1988.052.367.15

    Article  Google Scholar 

  • Mukherjee BK, Sachan HK (2004) Garnet response diamond pressure metamorphism from Tso Morari region, Ladakh, India. Himal J Sci 2:209. http://www.nepjol.info/index.php/HJS/article/download/902/899

  • Mukherjee BK, Sachan HK, Ogasawara Y, Muko A, Yoshioka N (2003) Carbonate-bearing UHPM rocks from the Tso Morari region, Ladakh, India: petrological implications. Int Geol Rev 45:49–69. doi:10.2747/0020-6814.45.1.49

    Article  Google Scholar 

  • Müller T, Dohmen R, Becker HW, ter Heege JH, Chakraborty S (2013) Fe–Mg interdiffusion rates in clinopyroxene: experimental data and implications for Fe–Mg exchange geothermometers. Contrib Mineral Petrol 166:1563–1576. doi:10.1007/s00410-013-0941-y

    Article  Google Scholar 

  • Newton RC, Charlu TV, Kleppa OJ (1980) Thermochemistry of the high structural state plagioclases. Geochim Cosmochim Acta 44:933–941. doi:10.1016/0016-7037(80)90283-5

    Article  Google Scholar 

  • O’Brien PJ, Zotov N, Law R, Khan MA, Jan MQ (2001) Coesite in Himalayan eclogite and implications for models of India–Asia collision. Geology 29:435–438. doi:10.1130/0091-7613

    Article  Google Scholar 

  • Parrish RR, Gough SJ, Searle MP, Waters DJ (2006) Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology 34:989–992. doi:10.1130/G22796A.1

    Article  Google Scholar 

  • Pattison DRM (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints from the Ballachulish aureole, Scotland. J Geol 100:423–446. http://www.jstor.org/stable/30065741

  • Powell R, Holland TJB (1999) Relating formulations of the thermodynamics of mineral solid solutions; activity modeling of pyroxenes, amphiboles and micas. Am Mineral 84:1–14. http://ammin.geoscienceworld.org/content/84/1-2/1.full.pdf

  • Ravna EJK, Terry MP (2004) Geothermobarometry of UHP and HP eclogites and schists—an evaluation of equilibria among garnet–clinopyroxene–kyanite–phengite–coesite/quartz. J Metamorph Geol 22:579–592. doi:10.1111/j.1525-1314.2004.00534.x

    Article  Google Scholar 

  • Sachan HK, Mukherjee BK, Ogaswara Y, Maruyama S, Ishida H, Muko A, Yoshika N (2004) Discovery of coesite from Indus Suture Zone (ISZ), Ladakh, India: evidence for deep subduction. Eur J Mineral 16:235–240. doi:10.1127/0935-1221/2004/0016-023

    Article  Google Scholar 

  • Štípská P, Powell R (2005) Constraining the P–T path of a MORB-type eclogite using pseudosections, garnet zoning and garnet-clinopyroxene thermometry: an example from the Bohemian Massif. J Metamorph Geol 23:725–743. doi:10.1111/j.1525-1314.2005.00607.x

    Article  Google Scholar 

  • St-Onge MR, Rayner N, Palin RM, Searle MP, Waters DJ (2013) Integrated pressure–temperature–time constraints for the Tso Morari dome (Northwest India): implications for the burial and exhumation path of UHP units in the western Himalaya. J Metamorph Geol 31:469–504. doi:10.1111/jmg.12030

    Article  Google Scholar 

  • Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90. doi:10.1016/j.pepi.2010.02.004

    Article  Google Scholar 

  • Thakur VC (1983) Deformation and metamorphism of the Tso Morari crystalline complex. In: Thakur VC, Sharma KK (eds) Geology of Indus suture zone of Ladakh. Wadia Institute of Himalayan Geology, Dehra Dun, pp 1–8

    Google Scholar 

  • Virdi NS, Thakur VC, Azmi RJ (1978) Discovery and significance of Permian microsfossils in the Tso Morari crystallines of Ladakh, India. Himal Geol 8:993–1000

    Google Scholar 

  • Vogt K, Castro A, Gerya T (2013) Numerical modeling of geochemical variations caused by crustal relamination. Geochem Geophys Geosyst 14:470–487. doi:10.1002/ggge.20072

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). J Metamorph Geol 19:139–153. doi:10.1046/j.0263-4929.2000.00303.x

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527. doi:10.1111/j.1525-1314.2007.00711.x

    Article  Google Scholar 

  • Wilke FDH, O’Brien PJ, Gerdes A, Timmerman MJ, Sudo M, Khan MA (2010) The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U–Pb and 40Ar/39Ar ages. Eur J Mineral 22:703–719. doi:10.1127/0935-1221/2010/0022-2051

    Article  Google Scholar 

  • Zhu B, Kidd WSF, Rowley DB, Currie BS, Shafique N (2005) Age of initiation of the India–Asia collision in the eastern Himalaya. J Geol 113:265–286. doi:10.1086/428805

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the constructive and detailed comments from two anonymous reviewers during peer review that helped in improving the presentation of the manuscript. Constructive comments from Richard Palin, Dave Waters, and Weronika Gorczyk on an earlier version are also gratefully appreciated. We also thank Tim Grove and Leigh Royden for helpful discussions regarding the exhumation model. Partial funding for this work was provided by NSF EAR 0910644 to O. J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjan Chatterjee.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, N., Jagoutz, O. Exhumation of the UHP Tso Morari eclogite as a diapir rising through the mantle wedge. Contrib Mineral Petrol 169, 3 (2015). https://doi.org/10.1007/s00410-014-1099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1099-y

Keywords

Navigation