Skip to main content

Advertisement

Log in

Experimental phase and melting relations of metapelite in the upper mantle: implications for the petrogenesis of intraplate magmas

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We performed a series of piston-cylinder experiments on a synthetic pelite starting material over a pressure and temperature range of 3.0–5.0 GPa and 1,100–1,600°C, respectively, to examine the melting behaviour and phase relations of sedimentary rocks at upper mantle conditions. The anhydrous pelite solidus is between 1,150 and 1,200°C at 3.0 GPa and close to 1,250°C at 5.0 GPa, whereas the liquidus is likely to be at 1,600°C or higher at all investigated pressures, giving a large melting interval of over 400°C. The subsolidus paragenesis consists of quartz/coesite, feldspar, garnet, kyanite, rutile, ±clinopyroxene ±apatite. Feldspar, rutile and apatite are rapidly melted out above the solidus, whereas garnet and kyanite are stable to high melt fractions (>70%). Clinopyroxene stability increases with increasing pressure, and quartz/coesite is the sole liquidus phase at all pressures. Feldspars are relatively Na-rich [K/(K + Na) = 0.4–0.5] at 3.0 GPa, but are nearly pure K-feldspar at 5.0 GPa. Clinopyroxenes are jadeite and Ca-eskolaite rich, with jadeite contents increasing with pressure. All supersolidus experiments produced alkaline dacitic melts with relatively constant SiO2 and Al2O3 contents. At 3.0 GPa, initial melting is controlled almost exclusively by feldspar and quartz, giving melts with K2O/Na2O ~1. At 4.0 and 5.0 GPa, low-fraction melting is controlled by jadeite-rich clinopyroxene and K-rich feldspar, which leads to compatible behaviour of Na and melts with K2O/Na2O ≫ 1. Our results indicate that sedimentary protoliths entrained in upwelling heterogeneous mantle domains may undergo melting at greater depths than mafic lithologies to produce ultrapotassic dacitic melts. Such melts are expected to react with and metasomatise the surrounding peridotite, which may subsequently undergo melting at shallower levels to produce compositionally distinct magma types. This scenario may account for many of the distinctive geochemical characteristics of EM-type ocean island magma suites. Moreover, unmelted or partially melted sedimentary rocks in the mantle may contribute to some seismic discontinuities that have been observed beneath intraplate and island-arc volcanic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abers GA, van Keken PE, Kneller EA, Ferris A, Stachnik JC (2006) The thermal structure of subduction zones constrained by seismic imaging: implications for slab dehydration and wedge flow. Earth Planet Sci Lett 241:387–397

    Article  Google Scholar 

  • Anderson DL (2006) Speculations on the nature and cause of mantle heterogeneity. Tectonophysics 416:7–22

    Article  Google Scholar 

  • Andres M, Blichert-Toft J, Schilling J-G (2002) Hafnium isotopes in basalts from the southern Mid-Atlantic Ridge from 40°S to 44°S: discovery and Shona plume-ridge interactions and the role of recycled sediments. Geochem Geophys Geosyst 3. doi:2002GC000324

  • Bagley B, Revenaugh J (2008) Upper mantle seismic shear discontinuities of the Pacific. J Geophys Res 113. doi:10.1029/2008JB005692

  • Bebout GE, Barton MD (2002) Tectonic and metasomatic mixing in a high-T, subduction-zone melange—insights into the geochemical evolution of the slab-mantle interface. Chem Geol 187:79–106

    Article  Google Scholar 

  • Becker H, Altherr R (1992) Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle. Nature 358:745–748

    Article  Google Scholar 

  • Bose K, Ganguly J (1995) Quartz-coesite transition revisited: Reversed experimental determination at 500–1200°C and retrieved thermochemical properties. Am Mineral 80:231–238

    Google Scholar 

  • Brenker FE, Vincze L, Vekemans B et al (2005) Detection of a Ca-rich lithology in the Earth’s deep (>300 km) convecting mantle. Earth Planet Sci Lett 236:579–587

    Article  Google Scholar 

  • Busigny V, Cartigny P, Philippot P, Ader M, Javoy M (2003) Massive recycling of nitrogen and other fluid mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schists Lustrés nappe (Western Alps, Europe). Earth Planet Sci Lett 215:27–42

    Article  Google Scholar 

  • Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini J-C (2008) Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat Geosci 1:64–67

    Article  Google Scholar 

  • Chauvel C, Marini J-C, Plank T, Ludden JN (2009) Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochem Geophys Geosyst 10. doi:10.1029/2008GC002101

  • Chopin C (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth Planet Sci Lett 212:1–14

    Article  Google Scholar 

  • Class C, le Roex AP (2008) Ce anomalies in Gough Island lavas—trace element characteristics of a recycled sediment component. Earth Planet Sci Lett 265:475–486

    Article  Google Scholar 

  • Daniels LRM, Gurney JJ, Harte B (1996) A crustal mineral in a mantle diamond. Nature 379:153–156

    Article  Google Scholar 

  • Dobrzhinetskaya LF, Green HW (2007) Experimental studies of mineralogical assemblages of metasedimentary rocks at Earth’s mantle transition zone conditions. J Metamorph Geol 25:83–96

    Article  Google Scholar 

  • Domanik KJ, Holloway JR (1996) The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: implications for deeply subducted sediments. Geochim Cosmochim Acta 60:4133–4150

    Article  Google Scholar 

  • Ducea MN (2002) Constraints on the bulk composition and root foundering rates of continental arcs: a California arc perspective. J Geophys Res 107. doi:10.1029/2001JB000643

  • Eiler JM, Farley KA, Valley JW, Hauri E, Craig H, Hart SR, Stolper EM (1997) Oxygen isotope variations in ocean island basalt phenocrysts. Geochim Cosmochim Acta 61:2281–2293

    Article  Google Scholar 

  • Eisele J, Sharma M, Galer SJG, Blichert-Toft J, Devey CW, Hofmann AW (2002) The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet Sci Lett 196:197–212

    Article  Google Scholar 

  • Eldridge CS, Compston W, Williams IS, Harris JW, Bristow JW (1991) Isotope evidence for the involvement of recycled sediments in diamond formation. Nature 353:649–653

    Article  Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Mineral Petrol 71:13–22

    Article  Google Scholar 

  • Green DH, Lambert IB (1965) Experimental crystallization of anhydrous granite at high pressures and temperatures. J Geophys Res 70:5259–5268

    Article  Google Scholar 

  • Green DH, Falloon TJ, Eggins SM, Yaxley GM (2001) Primary magmas and mantle temperatures. Euro J Mineral 13:437–451

    Article  Google Scholar 

  • Hermann J, Green DH (2001) Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett 188:49–168

    Article  Google Scholar 

  • Hermann J, Rubatto D (2009) Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem Geol 265:512–526

    Article  Google Scholar 

  • Hermann J, Spandler C (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49:717–740

    Article  Google Scholar 

  • Hermann J, HStC O’Neill, Berry AJ (2005) Titanium solubility in olivine in the system TiO2-MgO-SiO2: no evidence for an ultra-deep origin of Ti-bearing olivine. Contrib Mineral Petrol 148:746–760

    Article  Google Scholar 

  • Hermann J, Spandler CJ, Hack A, Korsakov A (2006) Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: implications for element transfer in subduction zones. Lithos 92:399–417

    Article  Google Scholar 

  • Herzberg C (2006) Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444:605–609

    Article  Google Scholar 

  • Hirschmann MM (2000) Mantle solidus: experimental constraints and the effect of peridotite composition. Geochem Geophys Geosyst 1. doi:2000GC000070

  • Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481–484

    Article  Google Scholar 

  • Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Carlson RW, Holland HD, Turekian KK (eds) Treatise on geochemistry. 2. The mantle and core. Elsevier, Amsterdam, pp 61–101

    Google Scholar 

  • Hofmann AW, Jochum KP (1996) Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project. J Geophys Res 101:11831–11839

    Article  Google Scholar 

  • Holland TJB (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. Am Mineral 65:129–134

    Google Scholar 

  • Huang S, Frey FA (2005) Recycled oceanic crust in the Hawaiian Plume: evidence from temporal geochemical variations within the Koolau Shield. Contrib Mineral Petrol 149:556–575

    Article  Google Scholar 

  • Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368

    Article  Google Scholar 

  • Jackson MG, Dasgupta R (2008) Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett 276:175–186

    Article  Google Scholar 

  • Jackson MG, Hart SR, Koppers AAP, Staudigel H, Konters J, Blusztajn J, Kurz M, Russel JA (2007) The return of subducted continental crust in Samoan lavas. Nature 448:684–687

    Article  Google Scholar 

  • Kelemen P, Hacker B, Austin N (2007) How does recycling of sediment components in arc magmatism really work? AGU Fall meeting Abstract no. V51G-04

  • Kerrick DM, Connolly JAD (2001) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411:293–296

    Article  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727

    Article  Google Scholar 

  • Kincaid C, Griffiths RW (2004) Variability in flow and temperature within mantle subduction zones. Geochem Geophys Geosyst 5:Q06002

    Google Scholar 

  • Klein EM (2003) Geochemistry of the igneous oceanic crust. In: Rudnick RL, Holland HD, Turekian KK (eds) Treatise on geochemistry. 3. The crust. Elsevier, Amsterdam, pp 433–463

    Google Scholar 

  • Klimm K, Blundy JD, Green TH (2008) Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J Petrol 49:523–553

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM (2006) Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet Sci Lett 249:188–199

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Reiners PW (2004) Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim Cosmochim Acta 68:345–360

    Article  Google Scholar 

  • Konzett J, Frost DJ, Proyer A, Ulmer P (2008) The Ca-Eskola component in eclogitic clinopyroxene as a function of pressure, temperature and bulk composition: an experimental study to 15 GPa with possible implications for the formation of oriented SiO2 inclusions in omphacite. Contrib Mineral Petrol 155:215–228

    Article  Google Scholar 

  • Liu L, Zhang J, Green HW II, Jin Z, Bozhilov KN (2007) Evidence of former stishovite in metamorphosed sediments, implying subduction to >350 km. Earth Planet Sci Lett 263:180–191

    Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679

    Google Scholar 

  • Nichols GT, Wyllie PJ, Stern CR (1994) Subduction zone-melting of pelagic sediments constrained by melting experiments. Nature 371:785–788

    Article  Google Scholar 

  • Nielsen SG, Rehkamper M, Norman MD, Halliday AN, Harrison D (2006) Thallium isotope evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature 439:314–317

    Article  Google Scholar 

  • Ono S (1998) Stability limits of hydrous minerals in sediments and mid-ocean ridge basalt compositions: implications for water transport in subduction zones. J Geophys Res 103. doi:10.1029/98JB01351

  • Pertermann M, Hirschmann MM (2003) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J Petrol 44:2173–2201

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Rapp RP, Irifune T, Shimizu N, Nishiyama N, Norman MD, Inoue T (2008) Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle. Earth Planet Sci Lett 271:14–23

    Article  Google Scholar 

  • Rehkämper M, Hofmann AW (1997) Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet Sci Lett 147:93–106

    Article  Google Scholar 

  • Rossi G, Abers GA, Rondenay S, Christensen DH (2006) Unusual mantle Poisson’s ratio, subduction, and crustal structure in central Alaska. J Geophys Res 111. doi:10.1029/2005JB003956

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) Treatise on geochemistry. 3. The crust. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  • Schertl H-P, Schreyer W (2008) Geochemistry of coesite-bearing “pyrope quartzite” and related rocks from the Dora Maira Massif, Western Alps. Euro J Mineral 20:791–809

    Article  Google Scholar 

  • Schmerr N, Garnero E (2006) Investigation of upper mantle discontinuity structure beneath the central Pacific using SS precursors. J Geophys Res 111. doi:10.1029/2005JB004197

  • Schmidt MW, Poli S (2003) Generation of mobile components during subduction of oceanic crust. In: Rudnick RL (ed) Treatise on geochemistry. 3. The crust. Elsevier, Amsterdam, pp 567–591

    Google Scholar 

  • Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228:65–84

    Article  Google Scholar 

  • Shatsky VS, Sobolev NV (2003) The Kokchetav massif of Kazakhstan. In: Carswell DA, Compagnoni R (eds) Ultrahigh pressure metamorphism, vol 5. European Mineralogical Union Notes, pp 75–103

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV et al (2007) The amount of recycled crust in the sources of mantle-derived melts. Science 316:412–417

    Article  Google Scholar 

  • Spandler CJ, Hermann J, Arculus RJ, Mavrogenes JA (2003) Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contrib Mineral Petrol 146:205–222

    Article  Google Scholar 

  • Spandler C, Mavrogenes J, Hermann J (2007) Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions. Chem Geol 239:228–249

    Article  Google Scholar 

  • Spandler C, Yaxley G, Green DH, Rosenthal A (2008) Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600°C and 3 to 5 GPa. J Petrol 49:771–795

    Article  Google Scholar 

  • Stern CR, Wyllie PJ (1973) Water-saturated and undersaturated melting relations of a granite to 35 kilobars. Earth Planet Sci Lett 18:163–167

    Article  Google Scholar 

  • Stern CR, Huang WL, Wyllie PJ (1975) Basalt-andesite-rhyolite-H2O—crystallization intervals with excess H2O and H2O-undersaturated liquidus surfaces to 35 kilobars, with implications for magma genesis. Earth Planet Sci Lett 28:189–196

    Article  Google Scholar 

  • Stracke A, Bizimis M, Salters VJM (2003) Recycling oceanic crust: quantitative constraints. Geochem Geophys Geosyst 4. doi:10.1029/2001GC000223

  • Swamy V, Saxena SK, Sundman B, Zhang J (1994) A thermodynamic assessment of silica phase diagram. J Geophys Res 99:11787–11794

    Article  Google Scholar 

  • Tatsumi Y (2005) The subduction factory: how it operates in the evolving Earth. GSA Today 15:4–10

    Article  Google Scholar 

  • Thomsen TB, Schmidt MW (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett 267:17–31

    Article  Google Scholar 

  • van Keken PE, Hauri EH, Ballentine CJ (2002) Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity. Ann Rev Earth Planet Sci 30:493–525

    Article  Google Scholar 

  • Weaver BL (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397

    Article  Google Scholar 

  • Williams Q, Revenaugh J (2005) Ancient subduction, mantle eclogite, and the 300 km seismic discontinuity. Geology 33:1–4

    Article  Google Scholar 

  • Wu Y, Fei Y, Jin Z, Liu X (2009) The fate of subducted upper continental crust: an experimental study. Earth Planet Sci Lett 282:275–284

    Article  Google Scholar 

  • Yasuda A, Fujii T, Kurita K (1994) Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behaviour of subducted oceanic crust in the mantle. J Geophys Res 99:9401–9414

    Article  Google Scholar 

  • Yaxley GM (2000) Experimental study of the phase and melting relations of homogeneous basalt plus peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib Mineral Petrol 139:326–338

    Article  Google Scholar 

  • Yaxley GM, Green DH (1998) Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweiz Mineral Petrogr Mitt 78:243–255

    Google Scholar 

  • Yaxley GM, Sobolev AV (2007) High-pressure partial melting of gabbro and its role in the Hawaiian magma source. Contrib Mineral Petrol 154:371–383

    Article  Google Scholar 

  • Zack T, John T (2007) An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chem Geol 239:199–216

    Article  Google Scholar 

  • Zheng Y, Lay T, Flanagan MP, Williams Q (2007) Pervasive seismic wave reflectivity and metasomatism of the Tonga mantle wedge. Science 316:855–859

    Article  Google Scholar 

Download references

Acknowledgments

We thank Marc Hirschmann and an anonymous reviewer for thoughtful reviews. Marco Herwegh, Frank Brink and Kevin Blake provided assistance to the SEM and electron microprobe analyses. This work was supported by the Australian Research Council (DP0558189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Spandler.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (XLS 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spandler, C., Yaxley, G., Green, D.H. et al. Experimental phase and melting relations of metapelite in the upper mantle: implications for the petrogenesis of intraplate magmas. Contrib Mineral Petrol 160, 569–589 (2010). https://doi.org/10.1007/s00410-010-0494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0494-2

Keywords

Navigation