Skip to main content
Log in

Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The transfer of fluid and elements from subducting crust to the overlying mantle wedge is a fundamental process affecting arc magmatism and the chemical differentiation of the Earth. While the production of fluid by breakdown of hydrous minerals is well understood, the liberation of trace elements remains generally unconstrained. In this paper, we evaluate the behaviour of trace elements during prograde metamorphism and dehydration using samples of high-pressure, low-temperature metamorphic rocks from New Caledonia. Samples examined include mafic and pelitic rock-types that range in grade from lawsonite blueschist to eclogite facies, and represent typical lithologies of subducting crust. Under lawsonite blueschist facies conditions, the low temperatures of metamorphism inhibit equilibrium partitioning between metamorphic minerals and allow for the persistence of igneous and detrital minerals. Despite this, the most important hosts for trace-elements include lawsonite, (REE, Pb, Sr), titanite (REE, Nb, Ta), allanite (LREE, U, Th), phengite (LILE) and zircon (Zr, Hf). At epidote blueschist to eclogite facies conditions, trace-element equilibrium may be attained and epidote (REE, Sr, Th, U, Pb), garnet (HREE), rutile (Nb, Ta), phengite (LILE) and zircon (Zr, Hf) are the major trace-element hosts. Chlorite, albite, amphibole and omphacite contain very low concentrations of the investigated trace elements. The comparison of mineral trace-element data and bulk-rock data at different metamorphic grades indicates that trace elements are not liberated in significant quantities by prograde metamorphism up to eclogite facies. Combining our mineral trace-element data with established phase equilibria, we show that the trace elements considered are retained by newly-formed major and accessory minerals during mineral breakdown reactions to depths of up to 150 km. In contrast, significant volumes of fluid are released by dehydration reactions. Therefore, there is a decoupling of fluid release and trace element release in subducting slabs. We suggest that the flux of trace elements from the slab is not simply linked to mineral breakdown, but results from complex fluid-rock interactions and fluid-assisted partial melting in the slab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2. A
Fig. 3A–D.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Abers GA (2000) Hydrated subducted crust at 100–250 km depth. Earth Planet Sci Lett 176:323–330

    Article  CAS  Google Scholar 

  • Aitchison J, Clarke GL, Meffre S, Cluzel D (1995) Eocene arc-continent collision in New Caledonia and implications for regional Southwest Pacific tectonic evolution. Geology 23:161–164

    Article  Google Scholar 

  • Arculus RJ, Lapierre H, Jaillard E (1999) Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology 27:547–550

    CAS  Google Scholar 

  • Bebout GE, Barton MD (1989) Fluid flow and measomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California. Geology 17:976–980

    Article  Google Scholar 

  • Becker H, Jochum KP, Carlson RW (1999) Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones. Chem Geol 160:291–308

    Article  CAS  Google Scholar 

  • Becker H, Jochum KP, Carlson RW (2000) Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chem Geol 163:65–99

    CAS  Google Scholar 

  • Belousova EA, Walters S, Griffin WL, O'Reilly SY (2001). Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian J Earth Sci vol. 48, pg 603-619

  • Black PM (1974) Oxygen isotope study of metamorphic rocks from the Ouegoa District, New Caledonia. Contrib Mineral Petrol 47:197–206

    CAS  Google Scholar 

  • Black PM (1977) Regional high-pressure metamorphism in New Caledonia; phase equilibria in the Ouegoa District. Tectonophysics 43:89–107

    CAS  Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Mineral-aqueous fluid partitioning of trace elements at 900 degrees C and 2.0 GPa; constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta 59:3331–3350

    CAS  Google Scholar 

  • Briggs RM, Kobe HW, Black PM (1977) High-pressure metamorphism of stratiform sulphide deposits from the Diahot region, New Caledonia. Miner Deposita 12:263–279

    CAS  Google Scholar 

  • Brothers RN, (1985) Regional mid-Tertiary blueschist-eclogite metamorphism in northern New Caledonia. Geol Fr 1985:37–44

    Google Scholar 

  • Carson CJ, Powell R, Clarke GL, (1999) Calculated mineral equilibria for eclogites in CaO-Na2O-FeO-MgO-Al2O3-SiO2-H2O; application to the Pouebo Terrane, Pam Peninsula, New Caledonia. J Metamorph Geol 17:9–24

    Article  CAS  Google Scholar 

  • Carswell DA, Wilson RN, Zhai M (1996) Ultra-high pressure aluminous titantites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China. Mineral Mag 60:461–471

    CAS  Google Scholar 

  • Clarke GL, Aitchison JC, Cluzel D (1997) Eclogites and blueschists of the Pam Peninsula, NE New Caledonia; a reappraisal. J Petrol 38: 843–876

    Article  CAS  Google Scholar 

  • Connolly JAD, Kerrick DM (2002) Metamorphic controls on seismic velocity of subducted oceanic crust at 100–250 km depth. Earth Planet Sci Lett 204:61–74

    Article  CAS  Google Scholar 

  • Davies JH (1999) The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism. Nature 398:142–145

    Article  CAS  Google Scholar 

  • Domanik KJ, Hervig RL, Peacock SM (1993) Beryllium and Boron in subduction zone minerals - an ion microprobe study. Geochim Cosmochim Acta 57:4997–5010

    CAS  Google Scholar 

  • Domanik KJ, Holloway JR (1996) The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa; implications for deeply subducted sediments. Geochim Cosmochim Acta 60:4133–4150

    CAS  Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Mineral Petrol 71:13–22

    CAS  Google Scholar 

  • Evans BW (1990) Phase relations of epidote-blueschists. Lithos 25:3–23

    CAS  Google Scholar 

  • Fitzherbert JA, Clarke GL, Marmo BA, Powell R (2001) Metabasites from the Pam Peninsula, NE New Caledonia: development of regional blueschist to eclogite facies zonation. 6th Int Eclog Conf, 39 pp

  • Frost BR, Chamberlain KR, Schumacher JC (2001) Sphene (titanite); phase relations and role as a geochronometer. Chem Geol 172:131–148

    Article  CAS  Google Scholar 

  • Getty SR, Selverstone J (1994) Stable isotopic and trace element evidence for restricted fluid migration in 2 GPa eclogites. J Metamorph Geol 12:747–760

    CAS  Google Scholar 

  • Graham CM, Powell R (1984) A garnet-hornblende geothermometer; calibration, testing, and application to the Pelona Schist, Southern California. J Metamorph Geol 2:13–31

    CAS  Google Scholar 

  • Green TH, Hellman PL (1982) Fe-Mg partitioning between coexisting garnet and phengite at high pressure, and comments on a garnet-phengite geothermometer. Lithos 15:253–266

    CAS  Google Scholar 

  • Hawkesworth CJ, Gallagher K, Hergt JM, and McDermott F (1993) Mantle and slab contributions in arc magmas. Annu Rev Earth Planet Sci 21:175–204

    Article  CAS  Google Scholar 

  • Hermann J (2002) Allanite: thorium and light rare earth element carrier in subducted crust. Chem Geol 192:289–306

    Article  CAS  Google Scholar 

  • Hermann J, Green DH (2001) Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett 188:149–168

    CAS  Google Scholar 

  • Itaya T, Brothers RN, Black PM (1985) Sulfides, oxides and sphene in high-pressure schists from New Caledonia. Contrib Mineral Petrol 91:151–162

    CAS  Google Scholar 

  • Kincaid C, Sacks IS (1997) Thermal and dynamical evolution of the upper mantle in subduction zones. J Geophys Res 102:12,295–12,315

    Google Scholar 

  • Kirby SH, Engdahl ER, Denlinger RP (1996) Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Bebout BE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom. American Geophysical Union, Washington, DC, pp. 195–214

  • Kogiso T, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subducted oceanic crust; 1, Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett 148:193–205

    CAS  Google Scholar 

  • Lin CH, Huang BS, Rau RJ (1999) Seismological evidence for a low-velocity layer within the subducted slab of southern Taiwan. Earth Planet Sci Lett 174:231–240

    Article  CAS  Google Scholar 

  • Liu J, Bohlen SR, Ernst WG (1996) Stability of hydrous phases in subducting oceanic crust. Earth Planet Sci Lett 143:161–171

    Article  CAS  Google Scholar 

  • Maurizot P, Eberle J-M, Habault C, Tessarollo C (1989) Notice explicative Sur La Feuille Pam-Ouegoa. BurRech Geol Mini Noumea

  • Messiga B, Tribuzio R, Bottazzi P, Ottolini L (1995) An ion microprobe study on trace element composition of clinopyroxenes from blueschist and eclogitized Fe-Ti-gabbros, Ligurian Alps, northwestern Italy; some petrologic considerations. Geochim Cosmochim Acta 59:59–75

    Article  CAS  Google Scholar 

  • Nagasaki A, Enami M (1998) Sr-bearing zoisite and epidote in ultra-high pressure (UHP) metamorphic rocks from the Su-Lu province, eastern China; an important Sr reservoir under UHP conditions. Am Mineral 83:240–247

    CAS  Google Scholar 

  • Nishiyama T (1989) Kinetics of hydrofracturing and metamorphic veining. Geology 17:1068–1071

    Article  CAS  Google Scholar 

  • Okamoto K, Maruyama S (1999) The high-pressure synthesis of lawsonite in the MORB+H2O system. Am Mineral 84 362–373

    Google Scholar 

  • Ono S (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions; implications for water transport in subduction zones. J Geophys Res 103:18253–18267

    CAS  Google Scholar 

  • Pawley AR, Holloway JR (1993) Water sources for subduction zone volcanism; new experimental constraints. Science 260:664–667

    CAS  Google Scholar 

  • Peacock SM (1993) The importance of blueschist→eclogite dehydration reactions in subducting oceanic crust. Geol Soc Am Bull 105:684–694

    Article  Google Scholar 

  • Peacock SM (1996) Thermal and petrologic structure of subduction zones. In: Bebout BE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom. American Geophysical Union, Washington, DC, pp 119–133

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Ann Rev Earth Planet Sci 23:251–285

    Article  CAS  Google Scholar 

  • Perfit MR, Gust DA, Bence AE, Arculus RJ, Taylor SR (1980) Chemical characteristics of island-arc basalts; implications for mantle sources. Chem Geol 30:227–256

    CAS  Google Scholar 

  • Philippot P, Selverstone J (1991) Trace-element-rich brines in eclogitic veins: implications for fluid composition and transport during subduction. Contrib Mineral Petrol 106:417–430

    CAS  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    CAS  Google Scholar 

  • Poli S, Schmidt MW (1995) H2O transport and release in subduction zones - experimental constraints on basaltic and andesitic systems. J Geophys Res 100:22299–22314

    CAS  Google Scholar 

  • Poli S, Schmidt MW (2002) Petrology of subducted slabs. Annu Rev Earth Planet Sci 30:207–235

    Article  CAS  Google Scholar 

  • Rawling TJ, Lister GS (1999) Oscillating modes of orogeny in the Southwest Pacific and the tectonic evolution of New Caledonia. In: Ring TU, Brandon MS, Lister G, Willett SD (eds) Exhumation processes; normal faulting, ductile flow and erosion. Geol Soc Lond Spec Publ 154:109–127

    CAS  Google Scholar 

  • Rawling TJ, Lister GS (2002) Large-scale structure of the eclogite-blueschist belt of New Caledonia. J Struct Geol 24:1239–1258

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, London

    Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry; partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138

    Article  CAS  Google Scholar 

  • Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budgets in subduction zones. Geochim Cosmochim Acta 67:2173–2187

    Google Scholar 

  • Sakai C, Higashino T, Enami M (1984) REE-bearing epidote from Sanbagawa pelitic schists, central Shikoku, Japan. Geochem J 18:45–53

    CAS  Google Scholar 

  • Sassi P, Harte B, Carswell DA, Yujing H (2000) Trace element distribution in central Dabie eclogites. Contrib Mineral Petrol 139:298–315

    Article  CAS  Google Scholar 

  • Scambelluri M, Philippot P (2001) Deep fluids in subduction zones. Lithos 55:213–227

    Article  CAS  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    CAS  Google Scholar 

  • Shatsky VS, Kozmenko OA, Sobolev NV (1990) Behaviour of rare-earth elements during high-pressure metamorphism. Lithos 25:219–226

    Article  Google Scholar 

  • Sorensen SS (1991) Petrogenetic significance of zoned allanite in garnet amphibolites from a paleosubduction zone—Catalina Schist, southern California. Am Mineral 76: 589–601

    CAS  Google Scholar 

  • Sorensen SS, Grossman JN (1989) Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone; Catalina Schist, Southern California. Geochim Cosmochim Acta 53: 3155–3177

    CAS  Google Scholar 

  • Sorensen SS, Grossman JN, Perfit MR (1997) Phengite-hosted LILE enrichment in eclogite and related rocks; implications for fluid-mediated mass transfer in subduction zones and arc magma genesis. J Petrol 38: 3–34

    Article  CAS  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Lond Spec Publ 42:313–345

    Google Scholar 

  • Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas; evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res 29:293–309

    CAS  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Tera F, Brown L, Morris J, Sacks IS, Klein J, Middleton R (1986) Sediment incorporation in island-arc magmas; inferences from Be-10. Geochim Cosmochim Acta 50:535–550

    CAS  Google Scholar 

  • Thöni M, Jagoutz E (1992) Some new aspects of dating eclogites in orogenic belts: Sm-Nd, Rb-Sr, and Pb-Pb isotopic results from the austoalpine Saualpe and Koralpe type-locality (Carinthia/Styria, southeastern Austria). Geochim Cosmochim Acta 56:347–368

    Article  Google Scholar 

  • Tribuzio R, Messiga B, Vannucci R, Bottazzi P (1996) Rare earth element redistribution during high-pressure-low-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwestern Italy); implications for light REE mobility in subduction zones. Geology 24:711–714

    Article  CAS  Google Scholar 

  • Tribuzio R, Tiepolo M, Thirlwall MF (2000) Origin of titanian pargasite in gabbroic rocks from the Northern Apennine ophiolites (Italy): insights into the late- magmatic evolution of a MOR-type intrusive sequence. Earth Planet Sci Lett 176:281–293

    Article  CAS  Google Scholar 

  • Troitzsch U, Ellis DJ (2002) Thermodynamic properties and stability of AlF-bearing titanite CaTiOSiO4–Ca-AlFSiO4. Contrib Mineral Petrol 142:543–563

    CAS  Google Scholar 

  • Ueno T (1999) REE-bearing sector-zoned lawsonite in the Sanbagawa pelitic schists of the eastern Kii Peninsula, central Japan. Euro J Mineral 11:993–998

    CAS  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science, 268:858–861

    Google Scholar 

  • White WM (2001). Geochemistry. http://www.geo.cornell.edu/geology/classes/geo455/Chapters.HTML

  • Wilson M (1989) Igneous petrogenesis; a global tectonic approach. Unwin Hyman, London

  • Xiao Y, Hoefs J, van den Kerkhof AM, Fiebig J, Zheng Y (2000) Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contrib Mineral Petrol 139:1–16

    Article  CAS  Google Scholar 

  • Yokoyama K, Brothers RN, Black PM (1986) Regional eclogite facies in the high-pressure metamorphic belt of New Caledonia. In: Evans BW, Brown EH (eds) Blueschists and eclogites. Geol Soc Am Mem 164:407–423

    CAS  Google Scholar 

  • Zack T, Foley SF, Rivers T (2002) Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). J Petrol 43: 1947–1974

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Australian Research Council and the Australian National University. The authors wish to thank Geoff Clarke for guidance during fieldwork and Frank Brink and Nick Ware for analytical assistance. Critical reviews by Thomas Zack and Harry Becker have greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Spandler.

Additional information

Editorial responsibility: J. Hoefs

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spandler, C., Hermann, J., Arculus, R. et al. Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contrib Mineral Petrol 146, 205–222 (2003). https://doi.org/10.1007/s00410-003-0495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0495-5

Keywords

Navigation