Skip to main content

Advertisement

Log in

Cordierite as an indicator of thermodynamic conditions of petrogenesis

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A refined thermodynamic model of H2O and CO2 bearing cordierite based on recent data on volatile incorporation into cordierite (Thompson et al. in Contrib Mineral Petrol 142:107–118, 2001; Harley and Carrington in J Petrol 42:1595–1620, 2001) reflects non-ideality of channel H2O and CO2 mixing. The dependence of cordierite H2O and CO2 contents on P, T and equilibrium fluid composition has been calculated for the range 600–800°C and 200–800 MPa. It has been used for establishing thermodynamic conditions of cordierite formation and the following retrograde PT paths of cordierite rocks from many localities. Estimates of the H2O and CO2 activities have shown that cordierites in granites, pegmatites and high-pressure granulites were formed in fluid-saturated conditions and wide range of H2O/CO2 relations. Very low cordierite H2O contents in many migmatites may be caused not only by fluid-undersaturated conditions at rock formation and H2O leakage on retrograde PT paths but also by the presence of additional volatile components like CH4 and N2. The pressure dependence of cordierite-bearing mineral equilibria on fluid H2O/CO2 relations has been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aranovich LYa, Podlesskii KK, Schepochkina NI (1981) An experimental determination of CO2 solubility in cordierite. Dokl Akad Nauk SSSR 261:728–730 (in Russian)

    Google Scholar 

  • Armbruster T (1986) Role of Na in the structure of low-cordierite: a single-crystal X-ray study. Am Mineral 71:746–757

    Google Scholar 

  • Armbruster T, Bloss FD (1982) Orientation and effects of channel H2O and CO2 in cordierite. Am Mineral 67:284–291

    Google Scholar 

  • Armbruster T, Irouschek A (1986) Cordierites from the Lepontine Alps: Na + Be → Al substitution, gas content, cell parameters and optics. Contrib Mineral Petrol 82:389–396

    Article  Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–H2O–CO2. J Petrol 29:445–522

    Google Scholar 

  • Berman RG, Aranovich LYa (1996) Optimized standard state and solution properties of minerals I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2. Contrib Miner Petrol 126:1–24

    Article  Google Scholar 

  • Boberski C, Schreyer W (1990) Synthesis and water contents of Fe2+-cordierites. Eur J Mineral 2:565–584

    Google Scholar 

  • Buick IS, Cartwright I, Harley SL (1998) The retrograde P–T–t path for low pressure granulites from the Reynolds Range, central Australia: petrological constraints and implications for low-P/high-T metamorphism. J Metamorph Geol 16:511–529

    Article  Google Scholar 

  • Bulbak T, Shvedenkov GYu (2005) Experimental study on incorporation of C–H–O–N fluid compounds in Mg-cordierite. Eur J Mineral 17:829–838

    Article  Google Scholar 

  • Bulbak TA, Shvedenkov GYu, Lepezin GG (2002) On saturation of magnesian cordierite with alkanes at high temperatures and pressures. Phys Chem Mineral 39:140–154

    Article  Google Scholar 

  • Burnham CW (1994) Development of the Burnham model for prediction of H2O solubility in magmas. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Rev Miner 30:123–129

  • Carey JW (1995) A thermodynamic formulation for hydrous cordierite. Contrib Miner Petrol 119:155–165

    Article  Google Scholar 

  • Fitzsimons ICW (1996) Metapelitic migmatites from Brattstrand Bluffs, East Antarctica—metamorphism, melting, and exhumation of the Mid-Crust. J Petrology 37:395–414

    Article  Google Scholar 

  • Fitzsimons ICW, Harley SL (1994) The influence of retrograde cation exchange on granulite PT estimates and a convergence technique for the recovery of peak metamorphic conditions. J Petrol 35:543–576

    Google Scholar 

  • Gibbs GV (1966) The polymorphism in cordierite. The crystal structure of low cordierite. Am Mineral 51:1068–1087

    Google Scholar 

  • Giorgetti G, Frezzotti M-LE, Palmeri R, Burke EA (1996) Role of fluids in migmatites: CO2–H2O fluid inclusions in leucosomes from the Deep Freeze Range migmatites (Terra Nova Bay, Antarctica. J Metamorph Geol 14:307–317

    Article  Google Scholar 

  • Goldman DS, Rossman GR, Dallase WA (1977) Channel constituents in cordierite. Am Mineral 62:1144–1157

    Google Scholar 

  • Gordillo CE, Schreyer W, Werding G, Abraham K (1985) Lithium in Na, Be cordierites from El Penon, Sierre de Cordoba, Argentina. Contrib Mineral Petrol 90:93–101

    Article  Google Scholar 

  • Gottschalk M (1997) Internally consistent thermodynamic data for rock-forming minerals in the system SiO2–TiO2–Al2O3–Fe2O3–CaO–MgO–FeO–K2O–Na2O–H2O–CO2. Eur J Mineral 9:175–223

    Google Scholar 

  • Greenfield JE, Clarke GL, White RW (1998) A sequence of partial melting reactions at Mt Stafford, central Australia. J Metamorph Geol 16:363–378

    Article  Google Scholar 

  • Harley SL, Carrington DP (2001) The distribution of H2O between cordierite and granitic melt: H2O incorporation in cordierite and its application to high-grade metamorphism and crustal anatexis. J Petrol 42:1595–1620

    Article  Google Scholar 

  • Harley SL, Thompson P, Hensen BJ, Buick IS (2002) Cordierite as a sensor of fluid conditions in high grade metamorphism and crustal anatexis. J Metamorph Geol 20:71–86

    Article  Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A:1–229

    Google Scholar 

  • Holland TJB, Powell R (1985) An internally consistent thermodynamic dataset with uncertainties and correlations: 2 data and results. J Metamorph Geol 3:343–370

    Article  Google Scholar 

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J Metamorph Geol 8:89–124

    Article  Google Scholar 

  • Johannes W, Schreyer W (1981) Experimental introduction of CO2 and H2O into Mg-cordierite. Am J Sci 281:299–317

    Google Scholar 

  • Kurepin VA (1979) Thermodynamics of hydrous cordierite and mineral equilibria involving it. Geokhimiya 1:49–60 (in Russian, English translation: Geochem Int 17)

    Google Scholar 

  • Kurepin VA (1984) H2O and CO2 contents of cordierite as an indicator of thermodynamic conditions of mineral formation. Geokhimiya 8:1125–1134 (in Russian, English translation: Geochem Int 22:148-156)

    Google Scholar 

  • Kurepin VA, Malyuk GA, Kalinichenko AM, Utochkin DV (1986) Volatiles in cordierite from Berdichev granites (the Ukrainian Shield). Mineral Zh 8:69–81 (in Russian)

    Google Scholar 

  • Lepezin GG, Melenevsky VN, Osorgin NYu, Yurkovsky SA (1983) Determination of water diffusion coefficients in cordierites. Dokl Akad Nauk SSSR 268:1218–1222 (in Russian)

    Google Scholar 

  • Lepezin GG, Osorgin NYu, Shvedenkov GYu (1984) Determination of CO2 diffusion coefficients in cordierites. Dokl Akad Nauk SSSR 275:970–974 (in Russian)

    Google Scholar 

  • Lepezin GG, Bulbak TA, Sokol EV, GYu Shvedenkov (1999) Fluid components of cordierites and their significance for metamorphic petrology. Russ Geol Geophys 40:98–112

    Google Scholar 

  • Mirwald PW, Maresch WV, Schreyer W (1979) Der Wassergehalt von Mg-Cordierite zwischen 500° and 800°C sowie 0.5 and 11 MPa. Fortschr Mineral 57:101–102

    Google Scholar 

  • Mukhopadhyay B, Holdaway MJ (1994) Cordierite–garnet–sillimanite–quartz equilibrium: I. New experimental calibration in the system FeO–Al2O3–SiO2–H2O and certain PTX(H2O) relations. Contrib Mineral Petrol 116:462–472

    Article  Google Scholar 

  • Newton RC, Wood BJ (1979) Thermodynamics of water in cordierite and some petrologic consequences of cordierite as a hydrous phase. Contrib Mineral Petrol 68:391–406

    Article  Google Scholar 

  • Povondra P, Langer K (1971) Synthesis and some properties of sodium–beryllium bearing cordierite, NaxMg2(Al4-xBexSi5O18). N Jb Mineral Abh 116:1–19

    Google Scholar 

  • Sakiko NO (1987) The composition and role of the fluid in migmatites: a fluid inclusion study of the Front Range rocks. Contrib Mineral Petrol 96:104–120

    Article  Google Scholar 

  • Schreyer W, Yoder HS (1964) The system Mg–cordierite–H2O and related rocks. N Jb Mineral Abh 101:271–342

    Google Scholar 

  • Skippen GB, Gunter AE (1996) The thermodynamic properties of H2O in magnesian and iron cordierite. Contrib Mineral Petrol 124:82–89

    Article  Google Scholar 

  • Thompson P, Harley SL, Carrington DP (2001) The distribution of H2O–CO2 between cordierite and granitic melt under fluid-saturated conditions at 5 kbar and 900°C. Contrib Mineral Petrol 142:107–118

    Google Scholar 

  • Vry JK, Brown PE, Valley JW (1990) Cordierite volatile content and the role of CO2 in high grade metamorphism. Am Mineral 75:71–88

    Google Scholar 

  • Zimmermann J-L (1981) La libération de l’eau, du gaz carbonique et des hydrocarbures des cordiérites. Cinétique des méchanismes. Détermination des sites. Intérêt petrogenetique. Bull Mineral 104:325–338

    Google Scholar 

Download references

Acknowledgments

Author is grateful to Prof S. L. Harley for the critical review and especially for the correction of \( a_{{{\text{H}}_{ 2} {\text{O}}}} \) estimates in silicate melts which has enabled in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor A. Kurepin.

Additional information

Communicated by T. L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurepin, V.A. Cordierite as an indicator of thermodynamic conditions of petrogenesis. Contrib Mineral Petrol 160, 391–406 (2010). https://doi.org/10.1007/s00410-009-0484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0484-4

Keywords

Navigation