Skip to main content
Log in

Thermodynamics of water in cordierite and some petrologic consequences of cordierite as a hydrous phase

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The H2O content of cordierite is often regarded as incidental to its stability, probably because cordierite has substantial fields of stability at low pressures both in wet and dry experimental systems. In this paper we show that, in contrast, the molecular water content of cordierite has profound effects on many equilibria involving this phase.

Mg-cordierite has been modelled as an ideal solid solution of the hydrous and anhydrous end-members Mg2Al4Si5O18·1.2H2O and Mg2Al4Si5O18 respectively. The H2O-solubility data of Mirwald and Schreyer (1977) fit this model within experimental uncertainty and yield 1 bar enthalpy and entropy changes for the reaction:

$$\begin{gathered} Mg_2 Al_4 Si_5 O_{18} + 1.2H_2 O = Mg_2 Al_4 Si_5 O_{18} \cdot 1.2H_2 O \hfill \\ cordierite fluid codierite \hfill \\ \end{gathered} $$

of −12,300 cal and −32.87 cal/K. This implies that the partial molal entropy of H2O in cordierite at 298 K/l bar is almost exactly the same as the molar entropy of liquid water (16.9 cal/K as opposed to 16.7 cal/K) and that the interaction energy of liquid water with cordierite is only of the order of a few hundred calories per mole.

Application of the model to the hydrous experiments of Fawcett and Yoder (1966) and Chernosky (1974) yields a value for ΔG 0f,298 of anhydrous Mgcordierite of between −2,062.71 and −2,074.21 Kcal per mole. This in in good agreement with the calorimetric data of Charlu, Newton and Kleppa (1975) which yield ΔG 0f,298 of −2,067.03±1.18 Kcal.

Water pressure has a considerable influence on the (Mg, Fe) isopleths of coexisting cordierite and garnet, and hence, their use as geobarometric curves. Pressures estimated from the Mg/Fe ratios in the high-Mg range can vary by two kilobars or more, depending on the assumed\(P_{H_2 O} \), with highest estimates for\(P_{H_2 O} = P_{total} \).

The stability field of the talc-kyanite “white-schist” assemblage (Schreyer, 1973) is found to expand appreciably as\(P_{H_2 O} \) is lowered. Thus the minimum pressure required to form this assemblage can be considerably less than the 10 kb required under conditions of\(P_{H_2 O} = P_{total} \)=P total, as anticipated by Schreyer (1977).

The high partial molal entropy of H2O in cordierite results in small entropy changes coupled with large volume changes in dehydration reactions forming cordierite. This greatly influences the slopes and positions of univariant reactions involving cordierite. The stability of cordierite is promoted to higher pressures in H2O-bearing systems where none of the cordierite breakdown products is a hydrate. Cordierite-forming reactions from hydrates can have the H2O released on the relatively low-temperature sides of the reaction curves, an anomalous situation known only in zeolite stability curves. These considerations can have profound effects on model “petrogenetic grids” involving cordierite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albee, A.: A petrogenetic grid for the Fe-Mg silicates of pelitic schists. Am. J. Sci.268, 512–536 (1965)

    Google Scholar 

  • Bird, G.W., Anderson, G.M.: The free energy of formation of magnesian cordierite and phlogopite. Am. J. Sci.273, 84–91 (1973)

    Google Scholar 

  • Burnham, C.W., Holloway, J.R., Davis, N.F.: Thermodynamic properties of water to 1,000 ° C and 10,00 bars. Geol. Soc, Am. Spec. Paper132, 96 (1969)

    Google Scholar 

  • Charlu, T.V., Newton, R.C., Kleppa, O.J.: Enthalpies of solution at 970 K of compounds in the system MgO-Al2O3-SiO2 by high temperature solution calorimetry. Geochim Cosmochim. Acta39, 1487–1497 (1975)

    Google Scholar 

  • Charlu, T.V., Newton, R.C., Kleppa, O.J.: Enthalpy of formation of some lime silicates by high-temperature solution calorimetry, with discussion of high pressure phase equilibria. Geochim. Cosmochim. Acta42, 367–375 (1978)

    Google Scholar 

  • Chernosky, J.V.: The upper stability of clinochlore at low pressure and the free energy of formation of Mg-cordierite. Am. Mineral.59, 496–507 (1974)

    Google Scholar 

  • Chinner, G.A., Dixon, J.E.: Some high-pressure parageneses of the Allalin Gabbro, Valais, Switzerland. J. Petrol.14, 185–202 (1973)

    Google Scholar 

  • Currie, K.L.: The reaction 3 cordierite=2 garnet + 4 sillimanite + 5 quartz as a geologic thermometer in the Opinicon Lake region, Ontario. Contrib. Mineral. Petrol.33, 215–226 (1971)

    Google Scholar 

  • Currie, K.L.: A note on the calibration of the garnet-cordierite geothermometer and geobarometer. Contrib. Mineral. Petrol.44, 35–44 (1974)

    Google Scholar 

  • Danckwerth, P.A., Newton, R.C.: Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO-Al2O3-SiO2 in the range 900 °–1,100 ° C and Al2O3 isopleths of enstatite in the spinel field. Contrib. Mineral. Petrol.66, 189–201 (1978)

    Google Scholar 

  • Fawcett, J.J., Yoder, H.S., Jr.: Phase relationships of chlorites in the system MgO-Al2O3-SiO2-H2O. Am. Mineral.51, 353–380 (1966)

    Google Scholar 

  • Fisher, J.R., Zen, E-An.: Thermodynamic calculations from hydro-thermal phase equilibrium data and the free energy of H2O. Am. J. Sci.270, 297–314 (1971)

    Google Scholar 

  • Flood, R.H., Shaw, S.E.: A cordierite-bearing granite suite from the New England Batholith, N.S.W., Australia. Contrib. Mineral. Petrol.52, 157–164 (1975)

    Google Scholar 

  • Gibbs, G.V.: The polymorphism of cordierite I: the crystal structure of low cordierite. Am. Mineral.51, 1068–1087 (1966)

    Google Scholar 

  • Goldman, D.S., Rossman, G.R., Dollase, W.A.: Channel constituents in cordierite. Am. Mineral.62, 1144–1157 (1977)

    Google Scholar 

  • Green, T.H., Vernon, R.H.: Cordierite breakdown under high-presssure, hydrous conditions. Contrib. Mineral. Petrol.46, 215–226 (1974)

    Google Scholar 

  • Gribble, C.D.: The role of partial fusion in the genesis of certain cordierite-bearing rocks. Scot. J. Geol.6, 75–82 (1970)

    Google Scholar 

  • Harker, A.: “Metamorphism”. E.P. Dutton, N.Y. 2nd ed., 362 (1939)

    Google Scholar 

  • Harte, B.: Determination of a pelite petrogenetic grid for the eastern Scottish Dalradian. Carnegie Inst. Washington Yearbook74, 438–446 (1975)

    Google Scholar 

  • Hensen, B.J., Green, D.H.: Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. I. Compositions with excess alumino-silicate. Contrib. Mineral. Petrol.33, 309–330 (1971)

    Google Scholar 

  • Hess, Paul C.: The metamorphic paragenesis of cordierite in pelitic rocks. Contrib. Mineral. Petrol.24, 191–207 (1969)

    Google Scholar 

  • Holdaway, M.J.: Mutual compatibility relations of the Fe+2-Mg-Al silicates at 800 ° C and 3 kb. Am. J. Sci.276, 285–308 (1976)

    Google Scholar 

  • Holdaway, M.J., Lee, S.M.: Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations. Contrib. Mineral. Petrol.63, 175–198 (1977)

    Google Scholar 

  • Holm, J.L., Kleppa, O.J.: Thermodynamics of the disordering process in albite. Am. Mineral.53, 123–133 (1967)

    Google Scholar 

  • Hutcheon, I., Froese, E., Gordon, T.M.: The assemblage quartzsillimanite-garnet-cordierite as an indicator of metamorphic conditions in the Daly Bay Complex, N.W.T. Contrib. Mineral. Petrol.44, 29–34 (1974)

    Google Scholar 

  • Kulke, H., Schreyer, W.: Kyanite-talc schist from Sar e Sang, Afghanistan. Earth Planet. Sci. Lett.18, 324–328 (1973)

    Google Scholar 

  • Langer, K., Schreyer, W.: Apparent effects of molecular water on the lattice geometry of cordierite: a discussion. Am. Mineral.61, 1036–1040 (1976)

    Google Scholar 

  • Leake, B.E.: Compilation of chemical analyses and physical constants of natural cordierites. Am. Mineral.45, 282–298 (1960)

    Google Scholar 

  • Lepezin, G.G.: Importance of water in cordierite in natural mineralogenesis. Dokl. Akad. Nauk SSSR186, 122–125 (1970)

    Google Scholar 

  • Levin, E.M., Robbins, C.R., McMurdie, H.F.: Phase diagrams for ceramists. Am. Ceram. Soc., 601 (1964)

  • Liou, J.G.: Synthesis and stability relations of wairakite, CaAl2 Si4O12-1H2O. Contrib. Mineral. Petrol.27, 259–282 (1970)

    Google Scholar 

  • Manghnani, M.H.: Analcite-jadeite phase boundary. Phys. Earth Planet. Inter.3, 456–461 (1970)

    Google Scholar 

  • Meagher, E.P., Gibbs, G.V.: Crystal structure and polymorphism of cordierite. Geol. Soc. Am. Spec. Paper.87, 107–108 (1966)

    Google Scholar 

  • Meagher, E.P., Gibbs, G.V.: The polymorphism of cordierite. II. The crystal-structure of indialite. Can. Mineral.15, 43–49 (1977)

    Google Scholar 

  • Mirwald, P.W., Getting, I.C., Kennedy, G.C.: Low-friction cell for piston-cylinder high-pressure apparatus. J. Geophys. Res.80, 1519–1525 (1975)

    Google Scholar 

  • Mirwald, P.W., Schreyer, W.: Die stabile und metastabile Abbaureaktion von Mg-cordierit in Talk, Disthen und Quartz und ihre Abhängigkeit vom Gleichgewichtswassergehalt des Cordierits. Fortschr. Mineral.55, 95–97 (1977)

    Google Scholar 

  • Navrotsky, A., Kleppa, O.J.: The thermodynamics of formation of simple spinels. J. Inorg. Nucl. Chem.30, 479–498 (1968)

    Google Scholar 

  • Navrotsky, A., Kleppa, O.J.: Estimate of enthalpies of formation of fusion of cordierite. J. Am. Ceram. Soc.56, 198–199 (1973)

    Google Scholar 

  • Navrotsky, A., Newton, R.C., Kleppa, O.J.: Sillimanite-disordering enthalpy by calorimetry. Geochim. Cosmochim. Acta37, 2497–2508 (1973)

    Google Scholar 

  • Newton, M.S., Kennedy, G.C.: Jadeite, analcite, nepheline and albite at high temperatures and pressures. Am. J. Sci.266, 728–735 (1968)

    Google Scholar 

  • Newton, R.C.: BeO in pegmatitic cordierite. Mineral. Mag.35, 920–927 (1966)

    Google Scholar 

  • Newton, R.C.: An experimental determination of the high pressure stability limits of magnesian cordierite under wet and dry conditions. J. Geol.80, 398–420 (1972)

    Google Scholar 

  • Newton, R.C., Thompson, A.B., Krupka, K.M.: Heat capacity of synthetic Mg3Al2Si3O12 from 350 to 1,000 K and the entropy of pyrope. EOS Trans. Am. Geophys. Union58, 523 (1977)

    Google Scholar 

  • Richardson, S.W.: Staurolite stability in a part of the system Fe-Al-Si-O-H. J. Petrol.9, 467–488 (1968)

    Google Scholar 

  • Robie, R.A., Hemingway, B.S., Fisher, J.R.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull.1452, 456 (1978)

    Google Scholar 

  • Schairer, J.F., Yagi, K.: The system FeO-Al2O3-SiO2. Am. J. Sci. Bowen Vol. Pt II, 471–512 (1952)

  • Schreyer, W.: A reconnaisance study of the system MgO-Al2O3-SiO2-H2O at pressures between 10 and 25 kb. Carnegie Inst. Washington. Yearbook66, 380–392 (1968)

    Google Scholar 

  • Schreyer, W.: Whiteschist: a high-pressure rock and its geologic significance. J. Geol.81, 735–739 (1973)

    Google Scholar 

  • Schreyer, W.: Whiteschists: their compositions and pressure temperature regimes based on experimental, field, and petrographic evidence. Tectonophysics43, 127–144 (1977)

    Google Scholar 

  • Schreyer, W., Yoder, H.S.: The system Mg-cordierite-H2O and related rocks. N. J. Mineral. Abh.101, 271–342 (1964)

    Google Scholar 

  • Seifert, F.: Stability of sapphirine: a study of the aluminous part of the system MgO-Al2O3-SiO2-H2O. J. Geol.82, 173–204 (1974)

    Google Scholar 

  • Seifert, F., Schreyer, W.: Lower temperature stability limit of Mgcordierite in the range 1–7 kb water pressures: a redetermination. Contrib. Mineral. Petrol.27, 225–238 (1970)

    Google Scholar 

  • Smith, J.V., Schreyer, W.: Location of argon and water in cordierite. Mineral. Mag.33, 226–236 (1960)

    Google Scholar 

  • Strens, R.G.J.: The common chain, ribbon, and ring silicates. In: The infra-red spectra of minerals. (V.C. Farmer, ed.), Mineral. Soc., London (1974)

    Google Scholar 

  • Thompson, A.B.: Laumontite equilibria and the zeolite facies. Am. J. Sci.269, 267–275 (1970)

    Google Scholar 

  • Thompson, A.B.: Mineral reactions in pelitic rocks. II. Calculation of some P-T-X (Fe-Mg) phase relations. Am. J. Sci.276, 425–454 (1976)

    Google Scholar 

  • Vrána, S., Barr, M.W.C.: Talc-kyanite-quartz schists and other high-pressure assemblages from Zambia. Mineral Mag.38, 837 (1972)

    Google Scholar 

  • Vrána, S., Prasad, R., Fediukova, E.: Metamorphic kyanite eclogites in the Lufilian Arc of Zambia. Contrib. Mineral. Petrol.51, 139–160 (1975)

    Google Scholar 

  • Weisbrod, A.: The problem of water in cordierite. Carnegie Inst. Washington. Yearbook72, 521–523 (1973 a)

    Google Scholar 

  • Weisbrod, A.: Cordierite-garnet equilibrium in the system Fe-Mn-Al-Si-O-H. Carnegie Inst. Washington Yearbook72, 515–523 (1973b)

    Google Scholar 

  • Wood, B.J.: Fe 2+ Mg2+ partition between coexisting cordierite and garnet — a discussion of the experimental data. Contrib. Mineral. Petrol.40, 253–258 (1973)

    Google Scholar 

  • Zen, E.-A.: Gibbs free energy, enthalpy and entropy of ten rock-forming minerals: calculations, discrepancies, implications. Am. Mineral.57, 524–553 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newton, R.C., Wood, B.J. Thermodynamics of water in cordierite and some petrologic consequences of cordierite as a hydrous phase. Contr. Mineral. and Petrol. 68, 391–405 (1979). https://doi.org/10.1007/BF01164524

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164524

Keywords

Navigation