Skip to main content

Advertisement

Log in

Diamond formation episodes at the southern margin of the Kaapvaal Craton: Re–Os systematics of sulfide inclusions from the Jagersfontein Mine

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Sulfide inclusions in diamonds from the 90-Ma Jagersfontein kimberlite, intruded into the southern margin of the Kaapvaal Craton, were analyzed for their Re–Os isotope systematics to constrain the ages and petrogenesis of their host diamonds. The latter have δ13C ranging between −3.5 and −9.8‰ and nitrogen aggregation states (from pure Type IaA up to 51% total N as B centers) corresponding to time/temperature history deep within the subcontinental lithospheric mantle. Most sulfides are Ni-poor ([Ni + Co]/Fe = 0.05–0.25 for 15 of 17 inclusions), have elevated Cu/[Fe + Ni + Co] ratios (0.02–0.36) and elemental Re–Os ratios between 0.5 and 46 (12 of 14 inclusions) typical of eclogitic to more pyroxenitic mantle sources. Re–Os isotope systematics indicate two generations of diamonds: (1) those on a 1.7 Ga age array with initial 187Os/188Os (187Os/188Osi) of 0.46 ± 0.07 and (2) those on a 1.1 Ga array with 187Os/188Osi of 0.30 ± 0.11. The radiogenic initial Os isotopic composition for both generations of diamond suggests that components with high time-integrated Re–Os are involved, potentially by remobilization of ancient subducted oceanic crust and hybridization of peridotite. A single sulfide with higher Os and Ni content but significantly lower 187Os/188Os hosted in a diamond with less aggregated N may represent part of a late generation of peridotitic diamonds. The paucity of peridotitic sulfide inclusions in diamonds from Jagersfontein and other kimberlites from the Kaapvaal craton contrasts with an overall high relative abundance of diamonds with peridotitic silicate inclusions. This may relate to extreme depletion and sulfur exhaustion during formation of the Kaapvaal cratonic root, with the consequence that in peridotites, sulfide-included diamonds could only form during later re-introduction of sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alard O, Griffin WL, Lorand JP, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulfides. Nature 407:891–894. doi:10.1038/35038049

    Article  Google Scholar 

  • Boyd SR, Pillinger CT (1994) A preliminary study of 15N/14N in octahedral growth form diamonds. Chem Geol 116:43–59. doi:10.1016/0009-2541(94)90157-0

    Article  Google Scholar 

  • Carlson RW, Pearson DG, James DE (2005) Physical, chemical and chronologic characteristics of continental mantle. Rev Geophys 43:RG1001. doi:10.1029/2004RG000156

    Article  Google Scholar 

  • Cartigny P, Harris JW, Javoy M (2001) Eclogitic diamond formation at Jwaneng: no room for a recycled component. Science 280:1421–1424. doi:10.1126/science.280.5368.1421

    Article  Google Scholar 

  • Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238. doi:10.1038/302236a0

    Article  Google Scholar 

  • Cornell DH, Armstrong RA, Walraven F (1998) Geochronology of the proterozoic Hartley Basalt formation, South Africa: constraints on the Kheis tectogenesis and the Kaapvaal Craton’s earliest Wilson Cycle. J Afr Earth Sci 26:5–27. doi:10.1016/S0899-5362(97)00133-4

    Article  Google Scholar 

  • Deines P, Harris JW (1995) Sulfide inclusion chemistry and carbon isotopes of African diamonds. Geochim Cosmochim Acta 59:3173–3188. doi:10.1016/0016-7037(95)00205-E

    Article  Google Scholar 

  • Deines P, Harris JW, Gurney JJ (1991) The carbon isotopic composition and nitrogen content of lithospheric and asthenospheric diamonds from the Jagersfontein and Koffiefontein kimberlite, South Africa. Geochim Cosmochim Acta 55:2615–2625. doi:10.1016/0016-7037(91)90377-H

    Article  Google Scholar 

  • Deines P, Harris JW, Gurney JJ (1993) Depth-related carbon isotope and nitrogen concentration variability in the mantle below the Orapa kimberlite, Botswana, Africa. Geochim Cosmochim Acta 57:2781–2796. doi:10.1016/0016-7037(93)90390-I

    Article  Google Scholar 

  • Dromgoole E, Pasteris J (1987) Interpretation of the sulfide assemblages in a suite of xenoliths from Kilbourne Hole and Potrillo Maar, New Mexico. In: Morros E, Pasteris J (eds) Mantle metasomatism and alkaline magmatism. Geol Soc Amer, Spec Paper, pp 25–46

    Google Scholar 

  • Eldridge CS, Compston W, Williams IS, Harris JW, Bristow JW (1991) Isotope evidence for the involvement of recycled sediments in diamond formation. Nature 353:649–653. doi:10.1038/353649a0

    Article  Google Scholar 

  • Evans T, Harris JW (1989) Nitrogen aggregation, inclusion equilibration temperatures and the age of diamonds. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks. Geol Soc Australia Spec Publ 14. Blackwell, Carlton, pp 1001–1006

    Google Scholar 

  • Farquhar J, Wing BA, McKeegan KD, Harris JW, Cartigny P, Thiemens MH (2002) Mass- independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298:2369–2372. doi:10.1126/science.1078617

    Article  Google Scholar 

  • Fleet ME, Stone WE (1990) Nickeliferous sulfides in xenoliths, olivine megacrysts and basaltic glass. Contrib Mineral Petrol 105:629–636. doi:10.1007/BF00306529

    Article  Google Scholar 

  • Griffin WL, Spetsius ZV, Pearson NJ, O’Reilly SY (2002) In situ Re–Os analysis of sulfide inclusions in kimberlitic olivine: new constraints on depletion events in the Siberian lithospheric mantle. Geochem Geophys Geosyst 3:2001GC000287

  • Griffin WL, O’Reilly SY, Natapov LM, Ryan CG (2003) The evolution of lithospheric mantle beneath the Kalahari Craton and its margins. Lithos 71:215–241. doi:10.1016/j.lithos.2003.07.006

    Article  Google Scholar 

  • Griffin WL, Graham S, O’Reilly SY, Pearson NJ (2004) Lithosphere evolution beneath the Kaapvaal Craton: Re–Os systematics of sulfides in mantle-derived peridotites. Chem Geol 208:95–215. doi:10.1016/j.chemgeo.2004.04.007

    Article  Google Scholar 

  • Harris JW (1992) Diamond geology. In: Field JE (ed) The properties of natural and synthetic diamond. Academic Press, London, pp 345–393

    Google Scholar 

  • Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77:295–316. doi:10.1016/j.lithos.2004.03.038

    Article  Google Scholar 

  • Jacobs J, Pisarevsky S, Thomas RJ, Becker T (2008) The Kalahari Craton during the assembly and dispersal of Rodinia. Precambrian Res 160:142–158. doi:10.1016/j.precamres.2007.04.022

    Article  Google Scholar 

  • Jagoutz E, Dawson JB, Hoernes S, Spettel B, Wänke H (1984) Anorthositic oceanic crust in the Archean Earth. In: Abstract of 15th Lunar planet science conference, pp 395–396

  • James DE, Fouch MJ (2002) Formation and evolution of Archean cratons: insights from Southern Africa. In: Ebinger C, Fowler M, Hawkesworth CJ (eds) The early earth: physical. Chemical and Biological Development. Geol Soc London, London, pp 1–26

    Google Scholar 

  • John T, Scherer E, Haase K, Schenk V (2004) Trace element fractionation during fluid-induced eclogitization in a subducting slab; trace element and Lu–Hf-Sm–Nd isotope systematics. Earth Planet Sci Lett 227:441–456. doi:10.1016/j.epsl.2004.09.009

    Article  Google Scholar 

  • Keays RR (1995) the role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 34:1–18. doi:10.1016/0024-4937(94)00029-2

    Article  Google Scholar 

  • Liu Y, Samaha N-T, Baker DR (2007) Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochim Cosmochim Acta 71:1783–1799. doi:10.1016/j.gca.2007.01.004

    Article  Google Scholar 

  • Lorand J-P, Alard O (2001) Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France). Geochim Cosmochim Acta 65:2789–2806. doi:10.1016/S0016-7037(01)00627-5

    Article  Google Scholar 

  • Lorand J-P, Conquéré F (1983) Contribution à l’étude des sulfures dans les enclaves de lherzolite à spinelle des basaltes alcalins (Massif Central et Languedoc, France). Bull Mineral (Paris) 106:585–605

    Google Scholar 

  • Lorand J-P, Grégoire M (2006) Petrogenesis of base metal sulphide assemblages of some peridotites from the Kaapvaal craton (South Africa). Contrib Mineral Petrol 151:521–538. doi:10.1007/s00410-006-0074-7

    Article  Google Scholar 

  • Ludwig KR (1999) Isoplot/Ex version 2.00; a geochronological toolkit for Microsoft Excel. Spec Pub, Berkeley Geochronological Center, p 46

    Google Scholar 

  • Luguet A, Shirey SB, Lorand J-P, Horan MF, Carlson RW (2007) Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochim Cosmochim Acta 71:3082–3097. doi:10.1016/j.gca.2007.04.011

    Article  Google Scholar 

  • Mavrogenes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180. doi:10.1016/S0016-7037(98)00289-0

    Article  Google Scholar 

  • Meisel T, Walker RJ, Morgan JW (1996) The osmium isotopic composition of the Earth’s primitive upper mantle. Nature 383:517–520. doi:10.1038/383517a0

    Article  Google Scholar 

  • Meisel T, Walker RJ, Irving AJ, Lorand J-P (2001) Osmium isotopic compositions of mantle xenoliths; a global perspective. Geochim Cosmochim Acta 65:1311–1323. doi:10.1016/S0016-7037(00)00566-4

    Article  Google Scholar 

  • Menzies AH, Carlson RW, Shirey SB, Gurney JJ (2003) Re–Os systematics of diamond-bearing eclogites from the Newlands kimberlite. Lithos 71:323–336. doi:10.1016/S0024-4937(03)00119-1

    Article  Google Scholar 

  • Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones; insights from arc-peridotites. Chem Geol 160:409–423. doi:10.1016/S0009-2541(99)00110-2

    Article  Google Scholar 

  • Pattou L, Lorand U, Gros M (1996) Non-chondritic platinum-group element ratios in the Earth’s mantle. Nature 379:712–715. doi:10.1038/379712a0

    Article  Google Scholar 

  • Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP, Shimizu N (1995) Re–Os, Sm–Nd, and Rb–Sr isotope evidence for thick Archean lithospheric mantle beneath the Siberian Craton modified by multistage metasomatism. Geochim Cosmochim Acta 59:959–977

    Google Scholar 

  • Pearson DG, Shirey SB, Harris JW, Carlson RW (1998) Sulfide inclusions in diamonds from the Koffiefontein kimberlite, S. Africa: constraints on diamond ages and mantle Re–Os systematics. Earth Planet Sci Lett 160:311–326. doi:10.1016/S0012-821X(98)00092-2

    Article  Google Scholar 

  • Puchtel I, Humayun M (2000) Platinum group elements in Kostomuksha komatiites and basalts: Implications for oceanic crust recycling and core-mantle interaction. Geochim Cosmochim Acta 64:4227–4242. doi:10.1016/S0016-7037(00)00492-0

    Article  Google Scholar 

  • Richardson SH, Shirey SB (2008) Continental mantle signature of Bushveld magmas and coeval diamonds. Nature 453:910–913. doi:10.1038/nature07073

    Article  Google Scholar 

  • Richardson SH, Gurney JJ, Erlank AJ, Harris JW (1984) Origin of diamonds in old enriched mantle. Nature 310:198–202. doi:10.1038/310198a0

    Article  Google Scholar 

  • Richardson SH, Erlank AJ, Harris JW, Hart SR (1990) Eclogitic diamonds of Proterozoic age from Cretaceous kimberlites. Nature 346:54–56. doi:10.1038/346054a0

    Article  Google Scholar 

  • Richardson SH, Harris JW, Gurney JJ (1993) Three generations of diamonds from old continental mantle. Nature 366:256–258. doi:10.1038/366256a0

    Article  Google Scholar 

  • Richardson SH, Shirey SB, Harris JW, Carlson RW (2001) Archean subduction recorded by Re–Os isotopes in eclogitic sulfide inclusions in Kimberley diamonds. Earth Planet Sci Lett 191:257–266. doi:10.1016/S0012-821X(01)00419-8

    Article  Google Scholar 

  • Richardson SH, Shirey SB, Harris JW (2004) Episodic diamond genesis at Jwaneng, Botswana, and implications for Kaapvaal craton evolution. Lithos 77:143–154. doi:10.1016/j.lithos.2004.04.027

    Article  Google Scholar 

  • Roy-Barman M, Allègre CJ (1995) 187Os/186Os in oceanic island basalts: tracing oceanic crust recycling in the mantle. Earth Planet Sci Lett 129:145–161. doi:10.1016/0012-821X(94)00238-T

    Article  Google Scholar 

  • Roy-Barman M, Wasserburg GJ, Papanastassiou DA, Chaussidon M (1998) Osmium isotopic compositions and Re–Os concentrations in sulfide globules from basaltic glass. Earth Planet Sci Lett 154:331–347. doi:10.1016/S0012-821X(97)00180-5

    Article  Google Scholar 

  • Rudnick RL, Eldridge CS, Bulanova GP (1993) Diamond growth history from in situ measurement of Pb and S isotopic compositions of sulphide inclusions. Geology 21:13–16. doi:10.1130/0091-7613(1993)021<0013:DGHFIS>2.3.CO;2

    Article  Google Scholar 

  • Schmitz MD, Bowring SA, de Wit MJ, Gartz V (2004) Subduction and terrane collision stabilize the western Kaapvaal craton tectosphere 2.9 billion years ago. Earth Planet Sci Lett 222:363–376. doi:10.1016/j.epsl.2004.03.036

    Article  Google Scholar 

  • Selby D, Creaser RA, Stein HJ, Markey RJ, Hannah JL (2007) Assessment of the 187Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon chronometers in magmatic ore systems. Geochim Cosmochim Acta 71:1999–2013. doi:10.1016/j.gca.2007.01.008

    Article  Google Scholar 

  • Shirey SB, Carlson RW, Richardson SH, Menzies A, Gurney JJ, Pearson DG, Harris JW, Wiechert U (2001) Archean emplacement of eclogitic components into the lithospheric mantle during formation of the Kaapvaal Craton. Geophys Res Lett 28:2509–2512. doi:10.1029/2000GL012589

    Article  Google Scholar 

  • Shirey SB, Harris JW, Richardson SH, Fouch MJ, James DE, Cartigny P, Deines P, Viljoen F (2002) Diamond genesis, seismic structure, and evolution of the Kaapvaal-Zimbabwe craton. Science 297:1683–1686. doi:10.1126/science.1072384

    Article  Google Scholar 

  • Shirey SB, Richardson SH, Harris JW (2004) Integrated models of diamond formation and craton evolution. Lithos 77:923–944. doi:10.1016/j.lithos.2004.04.018

    Article  Google Scholar 

  • Shirey SB, Richardson SH, Harris JW (2008) Mesoarchean to Mesoproterozoic Re–Os ages for sulfide inclusions in Orapa diamonds and implications for Kaapvaal-Zimbabwe craton development. In: Extended abstract of 9th international Kimberlit conference, A-00365

  • Smith CB (1983) Pb- Sr and Nd-isotopic evidence for the source regions of southern African Cretaceous kimberlites. Nature 304:51–54. doi:10.1038/304051a0

    Article  Google Scholar 

  • Smith CB, Gurney JJ, Harris JW, Otter ML, Kirkley MB, Jagoutz E (1991) Neodymium and strontium isotope systematics of eclogite and websterite paragenesis inclusions from single diamonds, Finsch and Kimberley Pool, RSA. Geochim Cosmochim Acta 55:2579–2590. doi:10.1016/0016-7037(91)90374-E

    Article  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds: constraints from mineral inclusions. Ore Geol Rev 34:5–32

    Article  Google Scholar 

  • Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP (2005) Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle. Contrib Mineral Petrol 150:505–522. doi:10.1007/s00410-005-0035-6

    Article  Google Scholar 

  • Taylor WR, Jaques AL, Ridd M (1990) Nitrogen-defect aggregation characteristics of some Australasian diamonds: time-temperature constraints on the source regions of pipe and alluvial diamonds. Am Mineral 75:1290–1310

    Google Scholar 

  • Walker RJ, Carlson RW, Shirey SB, Boyd FR (1989) Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Geochim Cosmochim Acta 53:1583–1595. doi:10.1016/0016-7037(89)90240-8

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60. doi:10.1093/petrology/39.1.29

    Article  Google Scholar 

  • Westerlund KJ, Shirey SB, Richardson SH, Carlson RW, Gurney JJ, Harris JW (2006) A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton, evidence from Re–Os isotope systematics. Contrib Mineral Petrol 152:275–294. doi:10.1007/s00410-006-0101-8

    Article  Google Scholar 

  • de Wit MJ, Roering C, Hart RJ, Armstrong RA, de Ronde CEJ, Green RWE, Tredoux M, Pederby E, Hart RA (1992) Formation of an Archaean continent. Nature 357:553–562

    Article  Google Scholar 

  • Yefimova ES, Sobolev NV, Pospelova LN (1983) Sulphide inclusions in diamond and specific features of their paragenesis. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 112:300–310 (in Russian)

    Google Scholar 

Download references

Acknowledgments

This work was funded by NSERC (CRD grant), Diavik Diamond Mines and the NSF (EAR-0310059) and would not have been possible without the generous assistance of many people. Jim Luhr and Tim Rose helped with IR and CL work at the Smithsonian Institute of Washington, respectively; Rus Hemley of the Geophysical Laboratory gave us access to the laser diamond cutting and polishing facilities; at DTM, Mary Horan and Tim Mock are acknowledged for their assistance in the clean labs and with the mass spectrometry, while Dave George provided support with the SEM. Rick Carlson (Department of Terrestrial Magnetism), Steve Richardson (University of Cape Town) and Mark Schmitz (University of Idaho) gracefully shared their expertise. At the University of Alberta, we benefited from support by George Braybrook (SEM lab), Sergei Matveev (EPMA lab), Guangcheng Chen (ICPMS lab) and Ralf Tappert (FTIR analyses and stable isotope lab). We would like to thank an anonymous reviewer and the editor, Jochen Hoefs, for their constructive criticisms that helped to improve the manuscript. Provision of samples through DeBeers Consolidated Mines Ltd. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Aulbach.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aulbach, S., Shirey, S.B., Stachel, T. et al. Diamond formation episodes at the southern margin of the Kaapvaal Craton: Re–Os systematics of sulfide inclusions from the Jagersfontein Mine. Contrib Mineral Petrol 157, 525–540 (2009). https://doi.org/10.1007/s00410-008-0350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0350-9

Keywords

Navigation