Skip to main content
Log in

Isotope and trace element evidence for depleted lithosphere in the source of enriched Ko’olau basalts

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We have measured the Hf and Nd isotopic compositions of 38 basalts from the Ko’olau drill hole, Hawai’i. The basalts show limited variations in both 176Hf/177Hf and 143Nd/144Nd (ε Nd varies from +4.2 to +7.3 and ε Hf from +8.0 to +12.3). Their correlated variation has an R 2 of 0.86. The data form an array with a slope of 1.2 on an ε Hfε Nd isotope correlation diagram, while the slope of all Hawai’ian basalt data is 0.98. Both slopes are significantly shallower than that of the mantle array of 1.4 defined by ocean island basalts. Previous studies have shown that a shallow slope in Hf–Nd isotope space can be related to ancient pelagic sediments in the mantle source (Blichert-Toft et al. 1999; Salters and White 1998). However, the combined variations in Ko’olau basalts of Hf–Nd–Pb–Os isotopic compositions and trace element ratios, such as La/Nb, Th/La and Sr/Nd, are not consistent with the simple addition of a sediment component to the mantle. We instead propose that the shallow slope on the Hf–Nd isotope correlation diagram for Ko’olau shield stage basalts can be better explained if the enriched endmember contains either an ancient oceanic lithosphere component or the high-176Hf/177Hf component observed in the Salt Lake Crater (SLC) peridotite xenoliths (which also have a depleted lithosphere origin). Since Ko’olau basalts have high 187Os/188Os (0.135–0.160) and the SLC xenoliths have 187Os/188Os up to 0.13 (Lassiter et al. 2000) Os-isotopes are consistent with the latter being a component in the enriched Ko’olau source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The Hf isotope analyses in question are relatively low-precision thermal ionization measurements.

References

  • Baker M, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond agregates. Geochim Cosmochim Acta 58:2811–2827

    Article  Google Scholar 

  • Baker MD, Hirschmann M, Ghiorso MS, Stolper EM (1994) Compositions of low-degree partial melts of peridotites: results from experiments and thermodynamic calculations. Nature 375:308–311

    Article  Google Scholar 

  • Bennett VC, Esat TM, Norman MD (1996) Two mantle-plume components in Hawaiian picrites inferred from correlated Os–Pb isotopes. Nature 381:221–224

    Article  Google Scholar 

  • Bizimis M, Salters VJM, Dawson JB (2003) The brevity of carbonatite sources in the mantle: evidence from Hf isotopes. Contrib Mineral Petrol 145:281–300

    Article  Google Scholar 

  • Bizimis M, Lassiter JC, Salters VJM, Sen G, Griselin M (2004a) Extreme Hf–Os isotope compositions in Hawaiian peridotite xenoliths: evidence for an ancient recycled lithosphere. Eos Trans AGU 85:V51B-0550

    Google Scholar 

  • Bizimis M, Sen G, Salters VJM (2004b) Hf–Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii. Earth Planet Sci Lett 217:43–58

    Article  Google Scholar 

  • Bizimis M, Sen G, Salters VJM (2005) Hf–Nd–Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: evidence for a depleted component in Hawaiian volcanism. Geochim Cosmochim Acta 69(10):2629–2646

    Article  Google Scholar 

  • Blichert-Toft J (2001) On the Lu–Hf isotope geochemistry of silicate rocks. Geostand Newsl 25:41–56

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F (1999) Hf isotopic compositions of the Hawaii Scientific Drilling Project core and the source mineralogy of Hawaiian basalts. Geophys Res Lett 26:935–938

    Article  Google Scholar 

  • Blichert-Toft J, Chauvel C, Albarède F (1997) Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib Miner Petrol 127:248–260

    Article  Google Scholar 

  • Blichert-Toft J, Frey FA, Albarède F (1999) Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285:879–882

    Article  PubMed  Google Scholar 

  • Blichert-Toft J, Weis D, Maerschalk C, Agranier A, Albarède F (2003) Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochem Geophys Geosyst 4:2002GC000340

    Google Scholar 

  • Brandon AD, Norman MD, Walker RJ, Morgan JW (1999) 186Os–187Os systematics in Hawaiian picrites. Earth Planet Sci Lett 174:25–42

    Article  Google Scholar 

  • Chen C-Y, Frey FA (1983) Origin of Hawaiian tholeiite and alkalic basalt. Nature 203:785–789

    Article  Google Scholar 

  • Chen C-Y, Frey FA, Garcia MO (1990) Evolution of alkalic lavas at Haleakala volcano, East Maui, Hawaii. Contrib Miner Petrol 105:197–218

    Article  Google Scholar 

  • Clague DA, Frey FA (1982) Petrology and trace element chemistry of the Honolulu volcanics, Oahu: implication for the oceanic mantle below Hawaii. J Petrol 23:447–504

    Google Scholar 

  • Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102:14991–15019

    Article  Google Scholar 

  • Frey FA (1980) The origin of pyroxenite and garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: trace element evidence. Am J Sci 280A:427–449

    Google Scholar 

  • Frey FA, Garcia MO, Roden M (1994) Geochemical characteristics of Koolau Volcano: implications of intershield geochemical differences among Hawaiian volcanoes. Geochim Cosmochim Acta 58:1441–1462

    Article  Google Scholar 

  • Frey FA, Huang S, Blichert-Toft J, Regelous M, Boyet M (2005) Origin of depleted components in basalt related to the Hawaiian hot spot: evidence from isotopic and incompatible element ratios. Geochem Geophys Geosyst 6(1). DOI 10.1029/2004GC000757

  • Garcia MO, Jorgenson BA, Mahoney JJ, Ito E, Irving AJ (1993) An evaluation of temporal geochemical evolution of Loihi summit lavas—results from alvin submersible dives. J Geophys Res 98(B1):537–550

    Article  Google Scholar 

  • Garcia MO, Rhodes JM, Trusdell FA, Pietruszka AJ (1996) Petrology of lavas from the Puu Oo eruption of Kilauea volcano: III. The Kupaianaha episode (1986–1992). Bull Volcanol 58:359–379

    Article  Google Scholar 

  • Green TH (1982) Anatexis of mafic crust and high pressure crystallization of andesite. In: Thorpe RS (ed) Andesites—orogenic andesites and related rocks. Wiley, New York, pp 465–487

    Google Scholar 

  • Hart SR (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett 90:273–296

    Article  Google Scholar 

  • Hart SR, Staudigel H (1989) Isotopic characterization and identification of recycled components. In: Hart SR, Gulen L (eds) Crust/mantle recycling at convergence zones. NATO ASI series C: Mathematical and Physical Sciences, Vol 258. Reidel, Turkey, pp 15–28

  • Haskins EH, Garcia MO (2004) Scientific drilling reveals geochemical heterogeneity within the Ko’olau shield Hawai’i. Contrib Miner Petrol 147:162–188

    Article  Google Scholar 

  • Hauri E (1996) Major-element variability in the Hawaiian mantle plume. Nature 382:415–419

    Article  Google Scholar 

  • Hauri EH, Kurz MD (1997) Melt migration and mantle chromatography, 2: a time-series Os isotope study of Mauna Loa volcano, Hawaii. Earth Planet Sci Lett 153:21–36

    Article  Google Scholar 

  • Hauri EH, Lassiter JC, DePaolo DJ (1996) Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. J Geophys Res 101:11793–11806

    Article  Google Scholar 

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489

    Article  Google Scholar 

  • Hirschman MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31(6):481–484

    Article  Google Scholar 

  • Hirschmann MM (1995) Partial melting of mantle pyroxenite. Trans AGU 76:696

    Google Scholar 

  • Huang S, Frey FA (2005) Recycled oceanic crust in the Hawaiian Plume: evidence from temporal geochemical variations within the Koolau shield. Contrib Miner Petrol 149(5):556–575

    Article  Google Scholar 

  • Humayun M, Qin L, Norman MD (2004) Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306:91–94

    Article  PubMed  Google Scholar 

  • Jackson ED, Wright TL (1970) Xenoliths in the Honolulu volcanic series, Hawaii. J Petrol 11:405–430

    Google Scholar 

  • Jackson MC, Frey FA, Garcia MO, Wilmoth RA (1999) Geology and geochemistry of basaltic lava flows and dikes from the Trans-Koolau tunnel, Oahu, Hawaii. Bull Volcanol 60:381–401

    Article  Google Scholar 

  • Jochum KP, Hofmann AW (1997) Constraints on earth evolution from antimony in mantle-derived rocks. Chem Geol 139(1–4):39–49

    Article  Google Scholar 

  • Jochum KP, Hofmann AW, Seufert HM (1993) Tin in mantle-derived rocks: constraints on earth evolution. Geochim Cosmochim Acta 57:3585–3595

    Article  Google Scholar 

  • Johnson KTM, Dick HJB (1992) Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. J Geophys Res 97:9219–9241

    Article  Google Scholar 

  • Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1:1999GC000014

    Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678

    Article  Google Scholar 

  • Kelley KA, Plank T, Farr L, Ludden J, Staudigel H (2005) Subduction cycling of U, Th, and Pb. Earth Planet Sci Lett 234:369–383

    Article  Google Scholar 

  • Keshav S, Sen G (2001) Majoritic garnets in Hawaiian xenoliths: preliminary results. Geophys Res Lett 28(18):3509–3512

    Article  Google Scholar 

  • Keshav S, Gudfinnson G, Sen G, Fei Y (2004) High-pressure melting experiments on garnet-clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth Planet Sci Lett 223:365–379

    Article  Google Scholar 

  • Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Acta 66:3109–3123

    Article  Google Scholar 

  • Kogiso T, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 1. experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett 148:193–205

    Article  Google Scholar 

  • Lassiter JC, Hauri EH (1998) Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet Sci Lett 164:483–496

    Article  Google Scholar 

  • Lassiter JC, DePaolo DJ, Tatsumoto M (1996) Isotopic evolution of Mauna Kea volcano: results from the initial phase of the Hawaii Scientific Drilling Project. J Geophys Res 101(B5):11769–11780

    Article  Google Scholar 

  • Lassiter JC, Hauri EH, Reiners PW, Garcia MO (2000) Generation of Hawaiian post-erosional lavas by melting of a mixed lherzolite/pyroxenite source. Earth Planet Sci Lett 178:269–284

    Article  Google Scholar 

  • Leeman WP, Gerlach DC, Garcia MO, West HB (1994) Geochemical variations in lavas from Kahoolawe volcano, Hawaii: evidence for open system evolution of plume-derived magmas. Contrib Miner Petrol 116:62–77

    Article  Google Scholar 

  • Li X, Kind R, Yuan X, Wolbern I, Hanka W (2004) Rejuvination of the lithosphere by the Hawaiian plume. Nature 427:827–829

    Article  PubMed  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Norman MD, Garcia MO (1999) Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites. Earth Planet Sci Lett 168:27–44

    Article  Google Scholar 

  • Parman SW, Grove T, Dann JC (2001) The production of Barberton komatiites in an Archean subduction zone. Geophys Res Lett 28(13):2513–2516

    Article  Google Scholar 

  • Patchett PJ, White WM, Feldmann H, Kielinczuk S, Hofmann AW (1984) Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth’s mantle. Earth Planet Sci Lett 69:365–378

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J Petrol 44(12):2173–2201

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res 51:1–25

    Article  Google Scholar 

  • Ren Z-Y, Takahashi E, Orihashi Y, Johnson KTM (2004) Petrogenesis of tholeiitic lavas from the submarine Hana Ridge, Haleakala Volcano, Hawaii. J Petrol 45(10):2067–2099

    Article  Google Scholar 

  • Richard PN, Shimizu N, Allègre CJ (1976) 143Nd/144Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31:269–278

    Article  Google Scholar 

  • Roden MF, Frey FA, Clague DA (1984) Geochemistry of tholeiitic and alkalic lavas from the Koolau Range, Oahu, Hawaii: implications for Hawaiian volcanism. Earth Planet Sci Lett 69:141–158

    Article  Google Scholar 

  • Roden MF, Trull T, Hart SR, Frey FA (1994) New He, Nd, Pb, and Sr isotopic constraints on the constitution of the Hawaiian plume—results from Koolau Volcano, Oahu, Hawaii, USA. Geochim Cosmochim Acta 58(5):1431–1440

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) The composition of the depleted mantle. Geochem Geophys Geosyst 5(5):2003GC000597

    Google Scholar 

  • Salters VJM, White WM (1998) Hf isotope constraints on mantle evolution. Chem Geol 145:447–460

    Article  Google Scholar 

  • Salters VJM, Zindler A (1995) Extreme 176Hf/177Hf in the sub-oceanic mantle. Earth Planet Sci Lett 129:13–30

    Article  Google Scholar 

  • Sen G (1988) Petrogenesis of spinel lherzolite and pyroxenite suite xenoliths from the Koolau shield, Oahu, Hawaii: implications for petrology of the post-eruptive lithosphere beneath Oahu. Contrib Miner Petrol 100:61–91

    Article  Google Scholar 

  • Sen G, Presnall DC (1986) Petrogenesis of dunite xenoliths from Koolau Volcano, Oahu, Hawaii: implications for Hawaiian volcanism. J Petrol 27:197–218

    Google Scholar 

  • Sims KWW, DePaolo DJ, Murrell MT, Scott Baldridge W, Goldstein SJ, Clague DA (1995) Mechanisms of magma generation beneath Hawaii and mid-ocean ridges: uranium/thorium and samarium/neodymium isotopic evidence. Science 267:508–512

    Article  Google Scholar 

  • Sims KWW, DePaolo DJ, Murrell MT, Baldridge WS, Goldstein S, Clague D (1999) Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: inferences from 238U–230Th–226Ra and 235U–231Pa disequilibria. Geochim Cosmochim Acta 63:4119

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Nikogosian IK (2000) Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas. Nature 404:986–989

    Article  PubMed  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  PubMed  Google Scholar 

  • Stille P, Unruh DM, Tatsumoto M (1983) Pb, Sr, Nd and Hf istopic evidence of multiple sources for Oahu, Hawaii basalts. Nature 304:25–29

    Article  Google Scholar 

  • Stille P, Unruh DM, Tatsumoto M (1986) Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source. Geochim Cosmochim Acta 50:2303–2319

    Article  Google Scholar 

  • Stracke A, Salters VJM, Sims KWW (1999) Assessing the presence of pyroxenite in the source of Hawaiian basalts: hafnium–neodymium–thorium isotope evidence. Geochem Geophys Geosyst 1(1)

  • Stracke A, Bizimis M, Salters VJM (2003) Recycling oceanic crust: quantitative constraints. Geochem Geophys Geosyst 4:2001GC000223

    Google Scholar 

  • Takahashi E, Nakajima K (2002) Melting process in the Hawaiian plume: an experimental study. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes: deep underwater perspectives, vol. 128. AGU, Washington, pp 403–418

  • Tatsumoto M (1966) Isotopic composition of lead in volcanic rocks from Hawaii, Iwo Jima, and Japan. J Geophys Res 71:1721–1733

    Google Scholar 

  • Turner S, Hawkesworth C (1997) Constraints on flux rates and mantle dynamics beneath island arcs. Nature 389:568–573

    Article  Google Scholar 

  • Turner S, Hawkesworth C, van Calsteren P, Heath E, Macdonald R, Black S (1996) U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth Planet Sci Lett 142:191–207

    Article  Google Scholar 

  • Turner S, Bourdon B, Hawkesworth C, Evans P (2000) 226Ra–230Th evidence for multiple dehydration events, rapid melt ascent and the time scales of differentiation beneath the Tonga–Kermadec island arc. Earth Planet Sci Lett 179:581–593

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarède F (1999) Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168:79–99

    Article  Google Scholar 

  • Wagner TP, Grove TL (1998) Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii. Contrib Miner Petrol 131:1–12

    Article  Google Scholar 

  • Wyllie PJ (1982) Subduction products according to experimental prediction. Geol Soc Am Bull 93:468–476

    Article  Google Scholar 

  • Yang H-J, Frey FA, Clague DA (2003) Constraints on the source components of lavas forming the Hawaiian North Arch and Honolulu Volcanics. J Petrol 44:603–627

    Article  Google Scholar 

  • Zindler A (1980) Geochemical processes in the earth’s mantle and the nature of crust–mantle interactions: evidence from studies of Nd and Sr isotope ratios in mantle derived igneous rocks and lherzolite nodules. Massachusetts Institute of Technology, Cambridge

Download references

Acknowledgements

We thank Shichun Huang and Fred Frey for access to their at the time unpublished manuscript and KSDP data and for their comments on the manuscript. We are grateful to reviewers John Lassiter and Gautam Sen for constructive criticism. This work was supported by a grant from NSF; EAR 0124965. JBT acknowledges financial support from the French Institut National des Sciences de l’Univers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent J. M. Salters.

Additional information

Communicated by T. L. Grove

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salters, V.J.M., Blichert-Toft, J., Fekiacova, Z. et al. Isotope and trace element evidence for depleted lithosphere in the source of enriched Ko’olau basalts. Contrib Mineral Petrol 151, 297–312 (2006). https://doi.org/10.1007/s00410-005-0059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0059-y

Keywords

Navigation