Skip to main content
Log in

Scientific drilling reveals geochemical heterogeneity within the Ko’olau shield, Hawai’i

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Ko’olau Scientific Drilling Project (KSDP) was initiated to determine if the distinctive geochemistry of Ko’olau lavas is a near-surface feature. This project successfully deepened a recent, ~351 m deep, tri-cone rotary-drilled water well by coring another ~328 m. Three Ar–Ar plateau ages of 2.8 to 2.9 Ma from the drill core section of 103 flows confirm stratigraphic interpretations that core drilling recovered the deepest and oldest subaerially erupted lavas yet sampled from this volcano. The petrography and geochemistry of the core, and cuttings from this and another new Ko’olau water well (~433 m deep) were determined. These analyses revealed that the geochemically distinct lavas of Ko’olau form a veneer only 175–250 m thick at the drill sites, covering flows with more typical Hawaiian tholeiite compositions. The compositional change occurred near the end of shield volcanism and is not abrupt. Thus, it is probably not related to a catastrophic event such as the collapse of the northeast flank of this volcano. The distinct geochemistry of surface Ko’olau lavas cannot be explained by melting pyroxenitic or combined pyroxenitic and peridotitic sources. Additional recycled oceanic crustal components, such as plagioclase-rich cumulates and sediment, were probably involved. As the Ko’olau volcano drifted off the Hawaiian hotspot and the overall degree of melting decreased, the proportion of melts from recycled oceanic crustal material increased relative to those from mantle peridotite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–c
Fig. 7
Fig. 8
Fig. 9a, b
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Achterbergh EV, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICP-MS. In: Sylvester PJ (ed) Laser ablation ICP-MS in the Earth Sciences. Mineral Assoc Can Short Course 29:239–243

    Google Scholar 

  • Blichert-Toft J, Frey FA, Albarede F (1999) Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285:879–882

    Article  CAS  PubMed  Google Scholar 

  • Budahn JR, Schmitt RA (1985) Petrogenetic modeling of Hawaiian tholeiitic basalts; a geochemical approach. Geochim Cosmochim Acta 49:67–87

    CAS  Google Scholar 

  • Byers C, Garcia MO, Muenow D (1985) Volatiles in pillow rim glasses from Loihi and Kīlauea volcanoes, Hawaii. Geochim Cosmochim Acta 49:1887–1896

    CAS  Google Scholar 

  • Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res 100:6093–6095

    Article  Google Scholar 

  • Chappell BW (1991) Trace element analysis of rocks by X-ray spectrometry. In: Barrett CS, Gilfrich JV, Noyan IC, Huang TC, Predecki PK (eds) Proc 39th Annu Conf Applications of X-ray analysis. Adv X-Ray Analysis 34:263–276

  • Clague DA, Dalrymple GB (1987) The Hawaiian-Emperor volcanic chain. Part I. Geologic evolution. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geol Surv Prof Pap 1350:5–73

    Google Scholar 

  • Clague DA, Moore JG, Dixon JE, Friesen WB (1995) Petrology of submarine lavas from Kīlauea’s Puna Ridge, Hawaii. J Petrol 36:299–349

    CAS  Google Scholar 

  • Davis MG, Garcia MO, Wallace P (2003) Volatiles in Mauna Loa glasses: implications for magma degassing and contamination, and growth of Hawaiian volcanoes. Contrib Mineral Petrol 144:570–591

    CAS  Google Scholar 

  • Decker RW, Koyanagi RY, Dvorak JJ, Lockwood JP, Okamura AT, Yamashita KM, Tanigawa WR (1983) Seismicity and surface deformation of Mauna Loa Volcano, Hawaii. EOS Trans Am Geophys Union 64:545–547

    Google Scholar 

  • DePaolo DJ, Stolper EM (1996) Models of Hawaiian volcano growth and plume structure; implications of results from the Hawaii Scientific Drilling Project. J Geophys Res 101:11,643–11,654

    CAS  Google Scholar 

  • Doell RR, Dalrymple GB (1973) Potassium-argon ages and paleomagnetism of the Waianae and Koolau Volcanic Series, Oahu, Hawaii. Geol Soc Am Bull:1217–1241

    Google Scholar 

  • Donaldson CH (1976) An experimental investigation of olivine morphology. Contrib Mineral Petrol 57:187–213

    CAS  Google Scholar 

  • Dvorak JJ, Dzurisin D (1993) Variations in magma supply rate at Kīlauea Volcano, Hawaii. J Geophys Res 98:22,255–22,268

    Google Scholar 

  • Eggins SM, Kinsley LPJ, Shelley JMG (1998) Deposition and element fractionations processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surface Sci 127/129:278–286

    Google Scholar 

  • Eiler JM, Farley KA, Valley JW, Hofmann AW, Stolper EM (1996) Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet Sci Lett 144:453–468

    Article  CAS  Google Scholar 

  • Feigenson MD, Hofmann AW, Spera FJ (1983) Case studies on the origin of basalt. II. The transition from tholeiitic to alkalic volcanism on Kohala Volcano, Hawaii. Contrib Mineral Petrol 84:390–405

    Google Scholar 

  • Frey FA, Garcia MO, Wise WS, Kennedy A, Gurriet P, Albarede F (1991) The evolution of Mauna Kea Volcano, Hawaii; petrogenesis of tholeiitic and alkalic basalts. J Geophys Res 96:14,347–14,375

    Google Scholar 

  • Frey FA, Garcia MO, Roden MF (1994) Geochemical characteristics of Koolau Volcano; implications of intershield geochemical differences among Hawaiian volcanoes. Geochim Cosmochim Acta 58:1441–1462

    CAS  Google Scholar 

  • Furnes H (1975) Experimental palagonization of basaltic glasses of varied composition. Contrib Mineral Petrol 50:105–113

    CAS  Google Scholar 

  • Garcia MO, Muenow DW, Aggrey KE, O’Neil JR (1989) Major element, volatile, and stable isotope geochemistry of Hawaiian submarine tholeiitic glasses. J Geophys Res 94:10,525–10,538

    CAS  Google Scholar 

  • Garcia MO, Hulsebosch T, Rhodes JM (1995) Olivine-rich submarine basalts from the southwest rift zone of Mauna Loa volcano: implications for magmatic processes and geochemical evolution. In: Rhodes JM, Lockwood JP (eds) Mauna Loa revealed: structure, composition, history, and hazards. Am Geophys Union Geophys Monogr 92:219–239

    Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Gramlich JW, Lewis VA, Naughton JJ (1971) Potassium-argon dating of Holocene basalts of the Honolulu volcanic series. Geol Soc Am Bull 82:1399–1404

    CAS  Google Scholar 

  • Guillou H, Sinton J, Laj C, Kissel C, Szeremeta N (2000) New K-Ar ages of shield lavas from Waianae Volcano, Oahu, Hawaiian Archipelago. J Volcanol Geotherm Res 96:229–242

    Article  CAS  Google Scholar 

  • Haggerty S, Baker I (1967) The alteration of olivine in basaltic and associated lavas. Part I. High temperature alteration. Contrib Mineral Petrol 16:233–257

    CAS  Google Scholar 

  • Hauri EH (1996) Major-element variability in the Hawaiian mantle plume. Nature 382:415–419

    CAS  Google Scholar 

  • Hauri EH (2002) SIMS analysis of volatiles in silicate glasses. 2. Isotopes and abundances in Hawaiian melt inclusions. Chem Geol 183:115–141

    CAS  Google Scholar 

  • Hauri EH, Kurz MD (1997) Melt migration and mantle chromatography. 2. A time-series Os isotope study of Mauna Loa Volcano, Hawaii. Earth Planet Sci Lett 153:21–36

    Article  CAS  Google Scholar 

  • Hauri EH, Lassiter JC, DePaolo DJ (1996) Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. J Geophys Res 101:11,793–11,806

    CAS  Google Scholar 

  • Herrero-Bervera E, CaTapia E, Walker GPL, Guerrero-GarcC (2002) The Nuuanu and Wailau giant landslides: insights from paleomagnetic and anisotropy of magnetic susceptibility (AMS) studies. Phys Earth Planet Interiors 129:83–98

    Article  Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436

    CAS  Google Scholar 

  • Jackson MC, Frey FA, Garcia MO, Wilmoth RA (1999) Geology and geochemistry of basaltic lava flows and dikes from the Trans-Koolau tunnel, Oahu, Hawaii. Bull Volcanol 60:381–401

    Article  Google Scholar 

  • Jakobsson SP (1972) On the consolidation and palagonitization of the tephra of the Surtsey volcanic island, Iceland. Surtsey Res Prog Rep 6:121–128

    Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1979) Electron microprobe reference samples for mineral analyses. In: Fudali RF (ed) Mineral sciences investigations; 1976–1977. Smithsonian Contrib Earth Sci 22:68–69

    CAS  Google Scholar 

  • Klein FW, Koyanagi RY, Nakata JS, Tanigawa WR (1987) The seismicity of Kīlauea’s magma system. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. USGS Prof Pap 1350:1019–1185

    Google Scholar 

  • Kurz MD, Kenna TC, Kammer D, Rhodes JM, Garcia MO (1995) Isotopic evolution of Mauna Loa volcano: A view from the submarine southwest rift. Am Geophys Union Mono 92:289–306

    Google Scholar 

  • Laj C, Szeremeta N, Kissel C, Guillou H (2000) Geomagnetic paleointensities at Hawaii between 3.9 and 2.1 Ma: preliminary results. Earth Planet Sci Lett 179:191–204

    Article  CAS  Google Scholar 

  • Lanphere MA, Dalrymple GB (1980) Age and strontium isotopic composition of the Honolulu volcanic series, Oahu, Hawaii. In: Irving AJ, Dungan MA (eds) The Jackson volume. Am J Sci 280 A(2):736–751

    Google Scholar 

  • Lassiter JC, Hauri EH (1998) Osmium-isotope variations in Hawaiian lavas; evidence for recycled oceanic lithosphere in the Hawaiian Plume. Earth Planet Sci Lett 164:483–496

    CAS  Google Scholar 

  • Lipman PW (1995) Declining growth of Mauna Loa during the last 100,000 Years: rates of lava accumulation vs. gravitational subsidence. In: Rhodes JM, Lockwood JP (eds) Mauna Loa revealed: structure, composition, history, and hazards. Am Geophys Union Geophys Monogr 92:45–80

    Google Scholar 

  • Lipman PW, Rhodes JM, Dalrymple GB (1990) The Ninole basalt; implications for the structural evolution of Mauna Loa Volcano, Hawaii. Bull Volcanol 53:1–19

    Google Scholar 

  • McDougall I (1964) Potassium-argon ages from lavas of the Hawaiian Islands. Geol Soc Am Bull 75:107–128

    CAS  Google Scholar 

  • McDougall I, Brown FH, Cerling TE, Hillhouse JW (1992) A reappraisal of the geomagnetic polarity time scale to 4 Ma using data from the Turkana Basin, East Africa. Geophys Res Lett 19:2349–2352

    Google Scholar 

  • Moore JG (1987) Subsidence of the Hawaiian Ridge. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. USGS Prof Pap 1350:85–100

    Google Scholar 

  • Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res 94:17,465–17,484

    Google Scholar 

  • Moore JG, Normark WR, Holcomb RT (1994) Giant Hawaiian underwater landslides. Science 264:46–47

    Google Scholar 

  • Mukhopadhyay S, Lassiter JC, Farley KA, Bogue SW (2003) Geochemistry of Kauai shield-stage lavas: Implications for the chemical evolution of the Hawaiian plume. Geochem Geophys Geosyst 2003-01-24

  • Multhaup RA (1990) Subsurface mapping of basalts based on petrographic characterization of cuttings from borehole drilling on Oahu, Hawaii. MSc, University of Hawaii

  • Norman MD, Garcia MO (1999) Primitive magmas and source characteristics of the Hawaiian Plume; petrology and geochemistry of shield picrites. Earth Planet Sci Lett 168:27–44

    Article  CAS  Google Scholar 

  • Norman MD, Garcia MO, Kamenetsky VS, Nielsen RL (2002) Olivine-hosted melt inclusions in Hawaiian picrites: equilibration, melting, and plume source characteristics. Chem Geol 183:143–168

    Article  CAS  Google Scholar 

  • Norrish K, Hutton JT (1969) An accurate x-ray spectrographic method for the analysis of a wide range of geological samples. Geochim Cosmochim Acta 33:431–453

    CAS  Google Scholar 

  • Pertermann M, Hirschmann M (2003) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral/melt partitioning of major elements at 2–3 GPa. J Petrol (in press)

  • Presley TK, Sinton JM, Pringle M (1997) Postshield volcanism and catastrophic mass wasting of the Waianae Volcano, Oahu, Hawaii. Bull Volcanol 58:597–616

    Article  Google Scholar 

  • Putirka K (1999) Melting depths and mantle heterogeneity beneath Hawaii and the East Pacific Rise; constraints from Na/Ti and rare earth element ratios. J Geophys Res 104:2,817–2,829

    Article  Google Scholar 

  • Quane SL, Garcia MO, Guillou H, Hulsebosch TP (2000) Magmatic history of the east rift zone of Kīlauea Volcano, Hawaii based on drill core from SOH 1. J Volcanol Geotherm Res 102:319–338

    Article  CAS  Google Scholar 

  • Rhodes JM (1996) Geochemical stratigraphy of lava flows sampled by the Hawaii Scientific Drilling Project. J Geophys Res 101:11,729–11,746

    CAS  Google Scholar 

  • Roden MF, Frey FA, Clague DA (1984) Geochemistry of tholeiitic and alkalic lavas from the Koolau Range, Oahu, Hawaii; implications for Hawaiian volcanism. Earth Planet Sci Lett 69:141–158

    Google Scholar 

  • Roden MF, Trull T, Hart SR, Frey FA (1994) New He, Nd, Pb, and Sr isotopic constraints on the constitution of the Hawaiian plume; results from Koolau Volcano, Oahu, Hawaii, USA. Geochim Cosmochim Acta 58:1431–1440

    CAS  Google Scholar 

  • Satake K, Smith JR, Shinozaki K (2002) Volume estimate and tsunami modeling for the Nuuanu and Wailau landslides. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes, deep underwater perspectives. Am Geophys Union Geophys Monogr 128:333–346

    Google Scholar 

  • Seaman C, Garcia MG, Stolper EM (1999) Hawaii Scientific Drilling Project, California Institute of Technology, Pasadena, 1:3–7

  • Sharp W, Turrin B, Renne P, Lanphere M (1996), The 40Ar/39Ar and K/Ar dating of lavas from the Hilo 1-km core hold, Hawaiian Scientific Drilling Project. J Geophys Res 101:11,604–11,616

    CAS  Google Scholar 

  • Shinozaki ZR, Ren Z, Takahashi E (2002) Geochemical and petrological characteristics of Nuuanu and Wailau landslide blocks. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes, deep underwater perspectives. Am Geophys Union Geophys Monogr 128:297–310

    Google Scholar 

  • Sinton CW, Christie DM, Duncan RA (1996) Geochronology of Galapagos seamounts. J Geophys Res 101:13,689–13,700

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Nikogosian IK (2000) Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas. Nature 404:986–989

    Article  CAS  PubMed  Google Scholar 

  • Spell TL, Harrison TM (1993) 40Ar/39Ar geochronology of post-Valles Caldera rhyolites, Jemez volcanic field, New Mexico. J Geophys Res 98:8031–8051

    CAS  Google Scholar 

  • Spell TL, McDougall I (2003) Characterization and calibration of 40Ar/39Ar dating standards. Chem Geol 198:189–211

    Article  CAS  Google Scholar 

  • Stearns HT (1939) Geologic map and guide of the Island of Oahu, Hawaii. Hawaii Div Hydrogr Bull 2

  • Steiger RH, Jaeger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo and cosmochronology. Earth Planet Sci Lett 36:359–362

    CAS  Google Scholar 

  • Stille P, Unruh DM, Tatsumoto M (1983) Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalts. Nature 304:25–29

    CAS  Google Scholar 

  • Sun S, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Magmatism in the ocean basins, Blackwell Scientific; Geological Society Special Publication 42:313–345

  • Takahashi E (1986) Melting study of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. J Geophys Res 91:9367–9382

    CAS  Google Scholar 

  • Takahashi E, Nakajima K (2002) Melting process in the Hawaiian plume: an experimental study. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes, deep underwater perspectives. Am Geophys Union Geophys Monogr 128:403–418

    Google Scholar 

  • Tanaka R, Nakamura E, Takahashi E (2002) Geochemical evolution of Koolau volcano, Hawaii. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes, deep underwater perspectives. Am Geophys Union Geophys Monogr 128:311–332

    Google Scholar 

  • Wentworth CK (1951) Geology and ground-water resources of the Honolulu-Pearl Harbor area, Oahu, Hawaii. Honolulu, Hawaii Board Water Supply

  • Wentworth CK, Winchell H (1947) Koolau basalt series, Oahu, Hawaii. Geol Soc Am Bull 58:49–77

    CAS  Google Scholar 

  • Winchell H (1947) Honolulu series, Oahu, Hawaii. Geol Soc Am Bull 58:1–48

    CAS  Google Scholar 

  • Wright TL, Fiske RS (1971) Origin of the differentiated and hybrid lavas of Kīlauea volcano, Hawaii. J Petrol 12:1–65

    Google Scholar 

  • Yaxley GM, Green DH (1998) Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz Mineral Petrogr Mitt 78:243–255

    CAS  Google Scholar 

Download references

Acknowledgements

We owe a great debt to Honolulu Board of Water Supply chief geologist Chester Lao for providing rotary drill cuttings from the Kalihi and Wa’ahila Ridge holes, assistance in obtaining drilling permits, and permission to deepen the Kalihi water observation hole. Thanks also to the DOSECC team for providing expert coring services, particularly Dennis Nielson, Theresa Fall, engineer Bruce Howell and drillers Vance Hyatt and Kiki Kama. Mahalo nui loa to Dave Whilldin for his aid during drilling setup, and to core processing volunteers Mike Davis, Melissa Ito, Nate Adams, and Toby Vana. We are indebted to J.M. Rhodes and Eiichi Takahashi for providing datasets for comparison, and to Mike Vollinger and Marc Norman for their assistance in obtaining XRF and ICP-MS analyses, respectively. Dating of samples in the labs of Robert Duncan (Oregon State University) and Terry Spell (University of Nevada at Las Vegas), paleomagnetic work by Rebecca Carey, and emergency thin sections provided by JoAnn Sinton were of great benefit to this study. Microprobe analyses were supported by a University of Hawaii Harold T. Stearns foundation grant. E.H. is grateful for the insight received from John Sinton and Donald Thomas on his M.Sc. thesis, which this paper is based on. The reviews of Fred Frey and Greg Yaxley greatly improved this manuscript. This work was supported by a joint grant from the Earth Science and Ocean Science Divisions of the National Science Foundation (OCE 99-08911), and by generous matching funds from the University of Hawai’i, California Institute of Technology (E.M. Stolper), U.C. Berkeley (D. DePaolo), Massachusetts Institute of Technology (F. Frey), Carnegie Institute of Washington (E. Hauri), Max Plank Institut für Chemie (A. Hofmann), Woods Hole Oceanographic Institute (M. Kurz), and the Tokyo Institute of Technology (E. Takahashi). This is SOEST contribution #6319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. Garcia.

Additional information

Editorial responsibility: T.L. Grove

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haskins, E.H., Garcia, M.O. Scientific drilling reveals geochemical heterogeneity within the Ko’olau shield, Hawai’i. Contrib Mineral Petrol 147, 162–188 (2004). https://doi.org/10.1007/s00410-003-0546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0546-y

Keywords

Navigation