Skip to main content

Advertisement

Log in

Inflammatory Mediators and Oxidative Stress in Animals Subjected to Smoke Inhalation: A Systematic Review

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

The inhalation injury is usually initiated by uninhibited absorption of smoke, favoring the release of cytokines and other lipid mediators from inflammatory cells in lung airways and parenchyma.

Objectives

To systematically review, examine, and synthesize the main inflammatory mediators analyzed in published studies in animals subjected to smoke inhalation, as well as oxidative stress.

Search Strategy

A comprehensive literature search was conducted through MEDLINE-PubMed, Web of Science, and Scopus.

Selection Criteria

Studies with animals subjected to lung damage from smoke inhalation that evaluated the presence and the action of inflammatory mediators and oxidative stress.

Results

A total of 1332 studies were initially identified, with only 31 meeting the inclusion criteria. The inflammatory mediators and oxidative stress markers studied and presented in the articles described herein were varied; however, the most cited ones were tumor necrosis factor-alpha (6), IL-8 and IL-6 (both studied in five articles), IL-1β and nuclear factor kappa β (both studied in 4 articles), malondialdehyde (11 studies), and myeloperoxidase (7). It is worth noting that most studies evaluated more than one inflammatory mediator and oxidative stress marker.

Conclusion

Based on this review, we could observe that the main inflammatory mediators and oxidative stress markers analyzed were TNF-α, IL-8, IL-6, IL-1β, nuclear factor kappa β, MDA, and MPO. However, it is necessary to increase the rigor of study design and data, in order to have studies that are more homogeneous and with appropriate methodological quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Souza R, Jardim C, Salge J et al (2004) Lesão por inalação de fumaça. J Bras Pneumol 30(6):557–565

    Google Scholar 

  2. Rivero C, Rivera J, Cabezas MC et al (2006) Manejo de quemados. Guias de practica clinica basadas en la evidencia (Proyecto ISS - ASCOFAME) p 14–69

  3. Demling R, Lalonde C, Youn YK et al (1995) Effect of graded increases in smoke inhalation injury on the early systemic response to a body burn. Crit Care Med 23(1):171–178

    Article  CAS  PubMed  Google Scholar 

  4. Shimoda K, Nakazawa H, Traber MG et al (2008) Plasma and tissue vitamin E depletion in sheep with burn and smoke inhalation injury. Burns 34:1137–1141

    Article  PubMed  Google Scholar 

  5. Musch G, Winkler T, Harris RS et al (2014) Lung [(18)F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch in the early stage of experimental acute smoke inhalation. Anesthesiology 120(3):683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rajpura A (2002) The epidemiology of burns and smoke inhalation in secondary care: a population-based study covering Lancashire and South Cumbria. Burns. 28(2):121–130

    Article  PubMed  Google Scholar 

  7. Mosier MJ, Pham TN, Park DR et al (2012) Predictive value of bronchoscopy in assessing the severity of inhalation injury. J Burn Care Res 33(1):65–73

    Article  PubMed  Google Scholar 

  8. Li W, Qiu X, Wang J et al (2013) The therapeutic efficacy of glutamine for rats with smoking inhalation injury. Int Immunopharmacol 16(2):248–253

    Article  CAS  PubMed  Google Scholar 

  9. Boateng JS, Matthews KH, Stevens HNE et al (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 97(8):2892–2923

    Article  CAS  PubMed  Google Scholar 

  10. Tasaki O, Mozingo D, Ishihara S et al (1998) Effect of Sulfo Lewis C on smoke inhalation injury in an ovine model. Crit Care Med 26(7):1238–1243

    Article  CAS  PubMed  Google Scholar 

  11. Tasaki O, Mozingo DW, Dubick MA et al (2002) Effects of heparin and lisofylline on pulmonary function after smoke inhalation injury in an ovine model. Crit Care Med 30(3):637–643

    Article  CAS  PubMed  Google Scholar 

  12. Ikeuchi H, Sakano T, Sanchez J et al (1992) The effects of platelet-activating factor (PAF) and a PAF antagonist (CV-3988) on smoke inhalation injury in an ovine model. J Trauma 32(3):344–349

    Article  CAS  PubMed  Google Scholar 

  13. Abali A, Karakayali H, Ozdemir B et al (2013) Destructive pulmonary effects of smoke inhalation and simultaneous alterations in circulating IL-6, TNF- α, and IFN- γ levels at different burn depths : an experimental study on rats. J Burn Care Res 34(3):334–341

    Article  PubMed  Google Scholar 

  14. Fang Y, Fu X, Gu C et al (2011) Hydrogen-rich saline protects against acute lung injury induced by extensive burn in rat model. J Burn Care Res 32(3):e82–e91

    Article  PubMed  Google Scholar 

  15. Cox RA, Burke AS, Jacob S et al (2009) Activated nuclear factor kappa B and airway inflammation after smoke inhalation and burn injury in sheep. J Burn Care Res 30(3):489–498

    Article  PubMed  Google Scholar 

  16. Herndon DN, Spies M (2001) Modern burn care. Semin Pediatr Surg 10:28–31

    Article  CAS  PubMed  Google Scholar 

  17. Traber MG, Shimoda K, Murakami K et al (2007) Burn and smoke inhalation injury in sheep depletes vitamin E: kinetic studies using deuterated tocopherols. Free Radic Biol Med. 42(9):1421–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morita N, Shimoda K, Traber MG et al (2006) Vitamin E attenuates acute lung injury in sheep with burn and smoke inhalation injury. Redox Rep. 11(2):61–70

    Article  CAS  PubMed  Google Scholar 

  19. McMillen C (2001) The sheep—an ideal model for biomedical research? ANZCCART News 14(2):1–4

    Google Scholar 

  20. Herndon DN, Traber DL, Niehaus GD et al (1984) The pathophysiology of smoke inhalation injury in sheep model. J Trauma 24:1044–1051

    Article  CAS  PubMed  Google Scholar 

  21. Herndon DN, Traber LD, Linares H et al (1986) Etiology of the pulmonary pathophysiology associated with inhalation injury. Resuscitation 14:43–59

    Article  CAS  PubMed  Google Scholar 

  22. Cox RA, Burke AS, Oliveras G et al (2005) Acute bronchial obstruction in sheep: histopathology and gland cytokine expression. Exp Lung Res 31(9–10):819–837

    Article  CAS  PubMed  Google Scholar 

  23. Dubick MA, Carden SC, Jordan BS et al (2002) Indices of antioxidant status in rats subjected to wood smoke inhalation and/or thermal injury. Toxicology 176(1–2):145–157

    Article  CAS  PubMed  Google Scholar 

  24. Belli S, Basaran O, Ozdemir BH et al (2011) Protective role of simvastatin on lung damage caused by burn and cotton smoke inhalation in rats. J Surg Res 167(2):e283–e290

    Article  CAS  PubMed  Google Scholar 

  25. Peters W (1981) Inhalation injury caused by the products of combustion. Can Med Assoc J 125(3):249–252

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Benzie IF (1996) Lipid peroxidation: a review of causes, consequences, measurements and dietary influences. Int J Food Sci Nutr 47(3):233–261

    Article  CAS  PubMed  Google Scholar 

  27. Greenhalgh DG, Saffle JR, Holmes JH 4th et al (2007) American Burn Association consensus conference to define sepsis and infection in burns. J Burn Care Res 28(6):776–790

    Article  PubMed  Google Scholar 

  28. Ferreira A, Matsubara L (1997) Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Rev Ass Med Brasil 43(1):61–68

    Article  CAS  Google Scholar 

  29. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15(4):316–328

    Article  PubMed  Google Scholar 

  30. Bagis S, Tamer L, Sahin G et al (2005) Free radicals and antioxidants in primary fibromyalgia: an oxidative stress disorder? Rheumatol Int 25(3):188–190

    Article  CAS  PubMed  Google Scholar 

  31. Hamahata A, Enkhbaatar P, Lange M et al (2011) Direct delivery of low-dose 7-nitroindazole into the bronchial artery attenuates pulmonary pathophysiology after smoke inhalation and burn injury in an ovine model. Shock 36(6):575–579

    Article  CAS  PubMed  Google Scholar 

  32. Demling R, LaLonde C, Ikegami K (1996) Fluid resuscitation with deferoxamine hetastarch complex attenuates the lung and systemic response to smoke inhalation. Surgery 119(3):340–348

    Article  CAS  PubMed  Google Scholar 

  33. Hamahata A, Enkhbaatar P, Kraft ER et al (2008) γ-Tocopherol nebulization by a lipid aerosolization device improves pulmonary function in sheep with burn and smoke inhalation injury. Free Radic Biol Med 45:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park MS, Cancio LC, Jordan BS et al (2004) Assessment of oxidative stress in lungs from sheep after inhalation of wood smoke. Toxicology 195(2–3):97–112

    Article  CAS  PubMed  Google Scholar 

  35. Tasaki O, Goodwin CW, Saitoh D et al (1997) Effects of Burns on Inhalation Injury. J Trauma 43(4):603–607

    Article  CAS  PubMed  Google Scholar 

  36. Yamamoto Y, Sousse LE, Enkhbaatar P et al (2012) γ-Tocopherol nebulization decreases oxidative stress, arginase activity, and collagen deposition after burn and smoke inhalation in the ovine model. Shock 38(6):671–676

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramos C, Pedraza-Chaverri J, Becerril C et al (2013) Oxidative stress and lung injury induced by short-term exposure to wood smoke in guinea pigs. Toxicol Mech Methods 23(9):711–722

    Article  CAS  PubMed  Google Scholar 

  38. Demling R, Lalonde C, Picard L et al (1994) Changes in lung and systemic oxidant and antioxidant activity after smoke inhalation. Shock 1(2):101–107

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Wang W, Zhang Y et al (2010) Clinical significance of a myeloperoxidase gene polymorphism and inducible nitric oxide synthase expression in cirrhotic patients with hepatopulmonary syndrome. J Huazhong Univ Sci Technolog Med Sci 30(4):437–442

    Article  PubMed  Google Scholar 

  40. Esechie A, Enkhbaatar P, Traber DL et al (2009) Beneficial effect of a hydrogen sulphide donor (sodium sulphide) in an ovine model of burn- and smoke-induced acute lung injury. Br J Pharmacol 158(6):1442–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qiu X, Ji S, Wang J et al (2012) The therapeutic efficacy of Ulinastatin for rats with smoking inhalation injury. Int Immunopharmacol 14:289–295

    Article  CAS  PubMed  Google Scholar 

  42. Ischiropoulos H, Mendiguren I, Fisher D et al (1994) Role of neutrophils and nitric oxide in lung alveolar injury from smoke inhalation. Am J Respir Crit Care Med 150(2):337–341

    Article  CAS  PubMed  Google Scholar 

  43. Monroy RL, Skelly RR, Davis TA et al (1992) Therapeutic evaluation of interleukin-1 for estimulation of hematopoiesis in primates after autologous bone marrow transplantation. Biotherapy 4:97–108

    Article  CAS  PubMed  Google Scholar 

  44. Dinarello CA (1989) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147

    Google Scholar 

  45. Arend WP (1991) Interleukin 1 receptor antagonist. A new member of the interleukin 1 family. J Clin Invest 88:1445–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Varella PPV, Forte WCN (2001) Citokines: a review. Rev Bras Alerg Imunopatol 24(4):146–154

    Google Scholar 

  47. Rothewell NJ (1991) Functions and mechanisms of interleukin 1 in the brain. Trends Pharmacol Sci 12:430–436

    Article  Google Scholar 

  48. Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265(3):621–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mackay F, Loester H, Stueber D et al (1993) Tumor necrosis factor alpha (TNF-al-pha)-induced cell adhesion to human endotelial cells is under dominant control of one TNF recep-tor type, TNF-R55. J Exp Med 177:1277–1286

    Article  CAS  PubMed  Google Scholar 

  50. Tartaglia LA, Ayres TM, Wong GH et al (1993) A novel domain within the 55 kd TNF recep-tor signals cell death. Cell 74:845–853

    Article  CAS  PubMed  Google Scholar 

  51. Kunkel SL, Striter RM, Chensue SW et al (1991) The role of TNF in diverse pathologic processes. Biotherapy 3:135–141

    Article  CAS  PubMed  Google Scholar 

  52. Riyami BM, Kinsella J, Pollok AJ et al (1991) Alveolar macrophage chemotaxis in fire victims with smoke inhalation and burns injury. Eur J Clin Invest 21:485–489

    Article  CAS  PubMed  Google Scholar 

  53. Moores HK, Janigan DT, Hajela RP (1993) Lung injury after experimental smoke inhalation: particle-associated changes in alveolar macrophages. Toxicol Pathol 21:521–527

    Article  CAS  PubMed  Google Scholar 

  54. Bidani A, Wang CZ, Heming TA (1998) Cotton smoke inhalation primes alveolar macrophages for tumor necrosis factor-alpha production and suppresses macrophage antimicrobial activities. Lung 176(5):325–336

    Article  CAS  PubMed  Google Scholar 

  55. Zwahlen R, Walz A, Rot A (1993) In vitro and in vivo activity and pathophysiology of human interleukin-8 and related peptides. Int Rev Exp Pathol 34:27–42

    Article  PubMed  Google Scholar 

  56. Christman JW, Sadikot RT, Blackwell TS (2000) The role of nuclear factor-kappa B in pulmonary diseases. Chest 117:1482–1487

    Article  CAS  PubMed  Google Scholar 

  57. Madjdpour L, Kneller S, Booy C et al (2003) Acid-induced lung injury: role of nuclear factor-kappaB. Anesthesiology 99:1323–1332

    Article  CAS  PubMed  Google Scholar 

  58. Laffon M, Pittet J, Modelska K et al (1999) Interleukin-8 mediates injury from smoke inhalation to both the lung endothelial and the alveolar epithelial barriers in rabbits. Am J Respir Crit Care Med 160(5 Pt 1):1443–1449

    Article  CAS  PubMed  Google Scholar 

  59. Albright JM, Davis CS, Bird MD et al (2012) The acute pulmonary inflammatory response to the graded severity of smoke inhalation injury. Crit Care Med 40:1113–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kurzius-Spencer M, Foster K, Littau S et al (2008) Tracheobronchial markers of lung injury in smoke inhalation victims. J Burn Care Res 29:311–318

    Article  PubMed  Google Scholar 

  61. Hamahata A, Enkhbaatar P, Kraft ER et al (2008) γ-Tocopherol nebulization by a lipid aerosolization device improves pulmonary function in sheep with burn and smoke inhalation injury. Free Radic Biol Med 45:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang S, Lantz RC, Rider ED et al (1997) A free radical scavenger (Lazaroid U75412E) attenuates tumor necrosis factor-alpha generation in a rabbit model of smoke-induced lung injury. Respiration 64(5):358–363

    Article  CAS  PubMed  Google Scholar 

  63. Wang S, Land RC, Chen GJ et al (1996) The prophylactic effects of U75412E pretreatment in a smoke-induced lung injury rabbit model. Pharmacol Toxicol 79(5):231–237

    Article  CAS  PubMed  Google Scholar 

  64. Farrell KE, Keely S, Graham B et al (2014) A systematic review of the evidence for central nervous system plasticity in animal models of inflammatory-mediated gastrointestinal pain. Inflamm Bowel Dis 20(1):176–195

    Article  PubMed  Google Scholar 

  65. Sena E, van der Worp HB, Howells D et al (2007) How can we improve the pre-clinical development of drugs for stroke? Trends Neurosci 30:433–439

    Article  CAS  PubMed  Google Scholar 

  66. Tsilidis KK, Panagiotou OA, Sena ES et al (2013) Evaluation of excess significance bias in animal studies of neurological diseases. PLoS Biol 11:e1001609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bidani A, Hawkins HK, Wang CZ et al (1999) Dose dependence and time course of smoke inhalation injury in a rabbit model. Lung. 177(2):111–122

    Article  CAS  PubMed  Google Scholar 

  68. Murakami K, Enkhbaatar P, Yu YM et al (2007) L-arginine attenuates acute lung injury after smoke inhalation and burn injury in sheep. Shock 28(4):477–483

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq/Brazil and Fundação de Amparo à Pesquisa do Estado de Sergipe/FAPITEC-SE for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Antunes de Souza Araújo.

Ethics declarations

Conflict of interest

There are no conflicts of interest in our work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, F.O., Felipe, F.A., de Melo Costa, A.C.S. et al. Inflammatory Mediators and Oxidative Stress in Animals Subjected to Smoke Inhalation: A Systematic Review. Lung 194, 487–499 (2016). https://doi.org/10.1007/s00408-016-9879-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9879-y

Keywords

Navigation