Skip to main content
Log in

Epigenetics: Novel Mechanism of Pulmonary Hypertension

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Introduction

Epigenetics refers to changes in phenotype and gene expression that occur without alterations in DNA sequence. MicroRNAs are relatively recently discovered negative regulators of gene expression and act at the posttranscriptional level.

Methods

This review summarizes epigenetic mechanisms of pulmonary hypertension, focusing on microRNAs related to pulmonary hypertension.

Results

There are three major mechanisms of epigenetic regulation, including methylation of CpG islands, modification of histone proteins, and microRNAs. There may be an epigenetic component to pulmonary hypertension. These epigenetic abnormalities can be reversed therapeutically.

Conclusions

By better integrating network biology with evolving technologies in cell culture and in vivo experimentation, we will better understand epigenetic mechanisms of pulmonary hypertension and identify more diagnostic and therapeutic targets in pulmonary hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sten YC, Jose L et al (2008) Pathogenic mechanisms of pulmonary hypertension. J Mol Cell Cardiol 44:14–30

    Article  Google Scholar 

  2. Huang JB, Liu YL, Yu CT et al (2011) Lung biopsy findings in previously inoperable patients with severe pulmonary hypertension associated with congenital heart disease. Int J Cardiol 151:76–83

    Article  PubMed  Google Scholar 

  3. Huang JB, Liu YL, Sun PW et al (2010) Novel strategy for treatment of pulmonary arterial hypertension: enhancement of apoptosis. Lung 188:179–189

    Article  CAS  PubMed  Google Scholar 

  4. Huang JB, Liang J, Zhou LY et al (2012) Eisenmenger syndrome: not always inoperable. Respir Care 57:1488–1495

    Article  PubMed  Google Scholar 

  5. Kim GH, Ryan JJ, Marsboom G et al (2011) Epigenetic mechanisms of pulmonary hypertension. Pulm Circ 1:347–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Barabasi AL, Gulbahce N, Loscalzo J et al (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cho D-Y, Kim Y-A, Przytycka TM (2012) Chapter 5: Network biology approach to complex diseases. PLoS Comput Biol 18:e1002820

    Article  Google Scholar 

  8. Allis CD, Jenuwein T, Reinberg D (2009) Epigenetics. Cold Spring Harbor Laboratory Press, Woodbury

    Google Scholar 

  9. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  PubMed  Google Scholar 

  10. Espada J, Esteller M (2010) DNA methylation and the functional organization of the nuclear compartment. Semin Cell Dev Biol 21:238–246

    Article  CAS  PubMed  Google Scholar 

  11. Randhawa R, Cohen P (2005) The role of the insulin-like growth factor system in prenatal growth. Mol Genet Metab 86:84–90

    Article  CAS  PubMed  Google Scholar 

  12. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    Article  CAS  PubMed  Google Scholar 

  13. Doi A, Park IH, Wen B et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41:1350–1353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ji H, Ehrlich LI, Seita J et al (2001) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467:338–342

    Article  Google Scholar 

  15. Jones PA, Takai D et al (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  CAS  PubMed  Google Scholar 

  16. Maunakea AK, Nagarajan RP, Bilenky M et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7–13

    CAS  Google Scholar 

  19. Szulwach KE, Li X, Li Y et al (2011) Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet 7:e1002154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chi P, Allis CD, Wang GG (2010) Covalent histone modifications—miswritten, misinterpret and mis-erased in human cancers. Nat Rev Cancer 10:457–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. de Ruijter AJ, van Gennip AH, Caron HN et al (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed Central  PubMed  Google Scholar 

  22. Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283

    Article  CAS  PubMed  Google Scholar 

  23. Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9:831–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Papageorgiou N, Tousoulis D, Androulakis E et al (2012) The role of microRNAs in cardiovascular disease. Curr Med Chem 19:2605–2610

    Article  CAS  PubMed  Google Scholar 

  26. Jopling C (2012) Liver-specific microRNA-122: biogenesis and function. RNA Biol 9:137–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  CAS  PubMed  Google Scholar 

  28. Archer SL, Weir EK, Wilkins MR (2010) Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121:2045–2066

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hagen M, Fagan K, Steudel W et al (2007) Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle. Am J Physiol 292:L1473–L1479

    CAS  Google Scholar 

  30. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  31. Wu N, Sulpice E, Obeid P et al (2012) The miR-17 family links p63 protein to MAPK signaling to promote the onset of human keratinocyte differentiation. PLoS ONE 7:e45761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kjaer-Frifeldt S, Hansen TF, Nielsen BS et al (2012) The prognostic importance of miR-21 in stage II colon cancer: a population-based study. Br J Cancer 107:1169–1174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Yokobori T, Suzuki S, Tanaka N et al (2013) MiR-150 is associated with poor prognosis in esophageal squamous cell carcinoma via targeting the EMT inducer ZEB1. Cancer Sci 104:48–54

    Article  CAS  PubMed  Google Scholar 

  34. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  CAS  PubMed  Google Scholar 

  35. Cai X (2006) Regulation of smooth muscle cells in development and vascular disease: current therapeutic strategies. Expert Rev Cardiovasc Ther 4:789–800

    Article  CAS  PubMed  Google Scholar 

  36. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  37. Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103

    Article  CAS  PubMed  Google Scholar 

  38. Morrell NW, Yang X, Upton PD et al (2001) Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-beta(1) and bone morphogenetic proteins. Circulation 104:790–795

    Article  CAS  PubMed  Google Scholar 

  39. Takemoto M, Sun J, Hiroki J et al (2002) Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106:57–62

    Article  CAS  PubMed  Google Scholar 

  40. Li X, Zhang X, Leathers R et al (2009) Notch3 signaling promotes the development of pulmonary arterial hypertension. Nat Med 15:1289–1297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Joshi SR, McLendon JM, Comer BS et al (2011) MicroRNAs-control of essential genes: implications for pulmonary vascular disease. Pulm Circ 1:357–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Bockmeyer CL, Maegel L, Janciauskiene S et al (2012) Plexiform vasculopathy of severe pulmonary arterial hypertension and microRNA expression. J Heart Lung Transplant 31:764–772

    Article  PubMed  Google Scholar 

  43. Pullamsetti SS, Doebele C, Fischer A et al (2012) Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 185:409–419

    Article  CAS  PubMed  Google Scholar 

  44. Yang S, Banerjee S, Freitas AD et al (2012) miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 302:L521–L529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Parikh VN, Jin RC, Rabello S et al (2012) MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation 125:1520–1532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Caruso P, Dempsie Y, Stevens HC et al (2012) A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res 111:290–300

    Article  CAS  PubMed  Google Scholar 

  47. Rhodes CJ, Wharton J, Boon RA et al (2013) Reduced microRNA-150 is associated with poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 187:294–302

    Article  CAS  PubMed  Google Scholar 

  48. Courboulin A, Paulin R, Giguère NJ et al (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208:535–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Jalali S, Ramanathan GK, Parthasarathy PT et al (2012) Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS ONE 7:e46808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Gou D, Ramchandran R, Peng X et al (2012) miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia. Am J Physiol Lung Cell Mol Physiol 303:L682–L691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Guo L, Qiu Z, Wei L et al (2012) The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-α1C. Hypertension 59:1006–1013

    Article  CAS  PubMed  Google Scholar 

  52. Kim J, Kang Y, Kojima Y et al (2013) An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med 19:74–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Fish JE, Santoro MM, Morton SU et al (2008) Mir-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. van Solingen C, Seghers L, Bijkerk R et al (2009) Antagomir-mediated silencing of endothelial cell specific microrna-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 13:1577–1585

    Article  PubMed Central  PubMed  Google Scholar 

  55. Cracowski JL, Leuchte HH (2012) The potential of biomarkers in pulmonary arterial hypertension. Am J Cardiol 110:32S–38S

    Article  PubMed  Google Scholar 

  56. Caruso P, MacLean MR, Khanin R et al (2010) Dynamic changes in lung microrna profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol 30:716–723

    Article  CAS  PubMed  Google Scholar 

  57. Pickering MT, Stadler BM, Kowalik TF (2009) Mir-17 and mir-20a temper an e2f1-induced g1 checkpoint to regulate cell cycle progression. Oncogene 28:140–145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Fontana L, Fiori ME, Albini S et al (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and bim. PLoS ONE 3:e2236

    Article  PubMed Central  PubMed  Google Scholar 

  59. Taguchi A, Yanagisawa K, Tanaka M et al (2008) Identification of hypoxia-inducible factor-1 alpha as a novel target for mir-17-92 microrna cluster. Cancer Res 68:5540–5545

    Article  CAS  PubMed  Google Scholar 

  60. Petrocca F, Vecchione A, Croce CM (2008) Emerging role of mir-106b-25/mir-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res 68:8191–8194

    Article  CAS  PubMed  Google Scholar 

  61. Brock M, Trenkmann M, Gay RE et al (2009) Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel stat3-microrna cluster 17/92 pathway. Circ Res 104:1184–1191

    Article  CAS  PubMed  Google Scholar 

  62. Tagawa H, Karube K, Tsuzuki S et al (2007) Synergistic action of the microrna-17 polycistron and myc in aggressive cancer development. Cancer Sci 98:1482–1490

    Article  CAS  PubMed  Google Scholar 

  63. Volinia S, Calin GA, Liu CG et al (2006) A microrna expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Wong WK, Knowles JA, Morse JH (2005) Bone morphogenetic protein receptor type II C-terminus interacts with c-Src: implication for a role in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 33:438–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Brock M, Trenkmann M, Gay RE et al (2009) Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ Res 104:1184–1191

    Article  CAS  PubMed  Google Scholar 

  66. Bonnet S, Rochefort G, Sutendra G et al (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104:11418–11423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Zhao L, al-Tubuly R, Sebkhi A et al (1996) Angiotensin II receptor expression and inhibition in the chronically hypoxic rat lung. Br J Pharmacol 119:1217–1222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Archer S, Rich S (2000) Primary pulmonary hypertension: a vascular biology and translational research “Work in progress”. Circulation 102:2781–2791

    Article  CAS  PubMed  Google Scholar 

  69. Yellaturu CR, Rao GN (2003) Cytosolic phospholipase A2 is an effector of Jak/STAT signaling and is involved in platelet-derived growth factor BB-induced growth in vascular smooth muscle cells. J Biol Chem 278:9986–9992

    Article  CAS  PubMed  Google Scholar 

  70. Banes-Berceli AK, Ketsawatsomkron P, Ogbi S et al (2007) Angiotensin II and endothelin-1 augment the vascular complications of diabetes via JAK2 activation. Am J Physiol Heart Circ Physiol 293:H1291–H1299

    Article  CAS  PubMed  Google Scholar 

  71. Wang FE, Zhang C, Maminishkis A et al (2010) MicroRNA-204/211 alters epithelial physiology. FASEB J 24:1552–1571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Rafeq S, Shah AM, Preston IR (2009) Biomarkers in pulmonary arterial hypertension. Int J Clin Pract Suppl 162:36–41

    Article  PubMed  Google Scholar 

  73. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Fichtlscherer S, De Rosa S, Fox H et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684

    Article  CAS  PubMed  Google Scholar 

  75. Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  76. Gupta SK, Bang C, Thum T (2010) Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet 3:484–488

    Article  CAS  PubMed  Google Scholar 

  77. Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101:2087–2092

    Article  CAS  PubMed  Google Scholar 

  78. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 107:6328–6333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Huang JB, Liang J, Du M (2012) Clinical and pathologic comparison of simple left-to-right shunt congenital heart disease and transposition of the great arteries with ventricular septal defect. Heart Surg Forum 15:E97–E102

    Article  PubMed  Google Scholar 

  80. Caruso P, MacLean MR, Khanin R et al (2010) Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol 30:716–723

    Article  CAS  PubMed  Google Scholar 

  81. Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9:107–183

    Article  Google Scholar 

  82. Kulshreshtha R, Ferracin M, Wojcik SE et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Ghosh G, Subramanian IV, Adhikari N et al (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Invest 120:4141–4154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Caruso P, MacLean MR, Khanin R et al (2010) Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol 30:716–723

    Article  CAS  PubMed  Google Scholar 

  85. White K, Joseph Loscalzo J, Chan SY (2012) Holding our breath: the emerging and anticipated roles of microRNA in pulmonary hypertension. Pulm Circ 2:278–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Chan SY, White K, Loscalzo J (2012) Deciphering the molecular basis of human cardiovascular disease through network biology. Curr Opin Cardiol 27:202–209

    Article  PubMed Central  PubMed  Google Scholar 

  87. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Lusis AJ, Weiss JN (2010) Cardiovascular networks: systems-based approaches to cardiovascular disease. Circulation 121:157–170

    Article  PubMed Central  PubMed  Google Scholar 

  89. Jensen MK, Pers TH, Dworzynski P et al (2011) Protein interaction-based genome-wide analysis of incident coronary heart disease. Circ Cardiovasc Genet 4:549–556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Cho D-Y, Kim Y-A, Przytycka TM (2012) Chapter 5: network biology approach to complex diseases. PLoS Comput Biol 8:e1002820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Loscalzo J, Kohane I, Barabasi AL (2007) Human disease classification in the post-genomic era: a complex systems approach to human pathobiology. Mol Syst Biol 3:124

    Article  PubMed Central  PubMed  Google Scholar 

  92. Xu XF, Ma XL, Shen Z et al (2010) Epigenetic regulation of the endothelial nitric oxide synthase gene in persistent pulmonary hypertension of the newborn rat. J Hypertens 28:2227–2235

    Article  CAS  PubMed  Google Scholar 

  93. Archer SL, Marsboom G, Kim GH et al (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121:2661–2671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ruikang Hospital Natural Science Foundation (Grant No. ZKZ201001), Projects in Guangxi Health Department (Grant No. GZPT13-27), Guangxi key scientific and technological project (Grant No. 2013BC26236), and National Science Foundation of China (Grant Code: 81360014).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-bin Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Jb., Liang, J., Zhao, Xf. et al. Epigenetics: Novel Mechanism of Pulmonary Hypertension . Lung 191, 601–610 (2013). https://doi.org/10.1007/s00408-013-9505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-013-9505-1

Keywords

Navigation