Skip to main content

Advertisement

Log in

Novel Strategy for Treatment of Pulmonary Arterial Hypertension: Enhancement of Apoptosis

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Advanced pulmonary arterial hypertension is characterized by extensive vascular remodeling that is usually resistant to vasodilator therapy. As the major component of the vascular media, decreased apoptosis of pulmonary arterial smooth muscle cell (PASMC) plays key roles during pulmonary vascular remodeling. Recent studies showed that enhancement of apoptosis of PASMC can reverse pulmonary vascular remodeling and severe pulmonary arterial hypertension. Enhancement of apoptosis of PASMC is becoming a novel strategy to reverse severe pulmonary arterial hypertension. This review analyzes some potential strategies to reverse pulmonary vascular remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AP-1:

Activating protein-1

ASK1:

Apoptosis signal-regulating kinase 1

AVD:

Apoptotic volume decrease

BMP:

Bone morphogenetic protein

BMPR2:

Bone morphogenetic protein receptor 2

[Ca2+]SR:

[Ca2+] in the sarcoplasmic reticulum (SR)

Cyt c :

Cytochrome c

DCA:

Dichloroacetate

eNOS:

Endothelial nitric oxide synthase

ERM:

Ezrin–radirin–moesin

GTP:

Guanosine triphosphate

GTPase:

Guanosine triphosphatase

H2O2 :

Hydrogen peroxide

IP3:

Inositol 1,4,5-trisphosphate

[Ca2+]i :

Intracellular free Ca2+ concentration

[K+]i :

Intracellular K+

IK(V):

K+ current through KV channels

DCm:

Mitochondrial membrane potential

MPT:

Mitochondrial permeability transition

NO:

Nitric oxide

NF-κB:

Nuclear factor kappa B

PAH:

Pulmonary arterial hypertension

PAP:

Pulmonary arterial pressure

PASMC:

Pulmonary arterial smooth muscle cell

PPARgamma:

Peroxisome proliferator-activated receptor gamma

SMC:

Smooth muscle cell

TNF-α:

Tumor necrosis factor α

VSMC:

Vascular smooth muscle cell

Kv :

Voltage-gated K+

HMG-CoA:

3-Hydroxy-3-methylglutaryl-coenzyme A

References

  1. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT et al (1991) Survival in patients with primary PAH: results from a national prospective registry. Ann Intern Med 115:343–349

    PubMed  Google Scholar 

  2. Chan SY, Loscalzo J (2008) Pathogenic mechanisms of pulmonary arterial hypertension. J Mol Cell Cardiol 44:14–30

    Article  PubMed  CAS  Google Scholar 

  3. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24S

    Article  PubMed  CAS  Google Scholar 

  4. Mandegar M, Fung YC, Huang W, Remillard CV, Rubin LJ, Yuan JX (2004) Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of PAH. Microvasc Res 68:75–103

    Article  PubMed  CAS  Google Scholar 

  5. Haunstetter A, Izumo S (1998) Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 82:1111–1129

    PubMed  CAS  Google Scholar 

  6. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  7. Vu CC, Bortner CD, Cidlowski JA (2001) Differential involvement of initiator caspases in apoptotic volume decrease and potassium efflux during Fas- and UV-induced cell death. J Biol Chem 276:37602–37611

    Article  PubMed  CAS  Google Scholar 

  8. Gustafsson AB, Gottlieb RA (2007) Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol 292:C45–C51

    Article  PubMed  CAS  Google Scholar 

  9. Gulbins E, Jekle A, Ferlinz K, Grassmé H, Lang F (2000) Physiology of apoptosis. Am J Physiol Renal Physiol 279:F605–F615

    PubMed  CAS  Google Scholar 

  10. Remillard CV, Yuan JXJ (2004) Activation of Kt channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 286:L49–L67

    Article  PubMed  CAS  Google Scholar 

  11. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  12. Duchen MR (1999) Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol 516:1–17

    Article  PubMed  CAS  Google Scholar 

  13. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  PubMed  CAS  Google Scholar 

  14. Shimizu S, Ide T, Yanagida T, Tsujimoto Y (2000) Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 275:12321–12325

    Article  PubMed  CAS  Google Scholar 

  15. Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB (1999) Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3:159–167

    Article  PubMed  CAS  Google Scholar 

  16. Zamzami N, Marzo I, Susin SA, Brenner C, Larochette N, Marchetti P, Reed J, Kofler R, Kroemer G (1998) The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 16:1055–1063

    Article  PubMed  CAS  Google Scholar 

  17. Ekhterae D, Platoshyn O, Krick S, Yu Y, McDaniel SS, Yuan JX (2001) Bcl-2 decreases voltage-gated K + channel activity and enhances survival in vascular smooth muscle cells. Am J Physiol Cell Physiol 281:C157–C165

    PubMed  CAS  Google Scholar 

  18. Burg ED, Remillard CV, Yuan JX (2008) Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol 153(Suppl 1):S99–S111

    Article  PubMed  CAS  Google Scholar 

  19. Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104:11418–11423

    Article  PubMed  CAS  Google Scholar 

  20. Yuan XJ, Wang J, Juhaszova M, Gaine SP, Rubin LJ (1998) Attenuated K+ channel gene transcription in primary PAH. Lancet 351:726–727

    Article  PubMed  CAS  Google Scholar 

  21. Guignabert C, Izikki M, Tu LI, Li Z, Zadigue P, Barlier-Mur AM, Hanoun N, Rodman D, Hamon M, Adnot S, Eddahibi S (2006) Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop PAH. Circ Res 98:1323–1330

    Article  PubMed  CAS  Google Scholar 

  22. Pozeg ZI, Michelakis ED, McMurtry MS, Thébaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G, Sultanian R, Koshal A, Archer SL (2003) In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces PAH and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107:2037–2044

    Article  PubMed  CAS  Google Scholar 

  23. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thébaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641

    Article  PubMed  CAS  Google Scholar 

  24. McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, Bonnet S, Puttagunta L, Michelakis ED (2005) Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest 115:1479–1491

    Article  CAS  Google Scholar 

  25. Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4:155–181

    Article  PubMed  CAS  Google Scholar 

  26. Heerdt BG, Houston MA, Augenlicht LH (2005) The intrinsic mitochondrial membrane potential of colonic carcinoma cells is linked to the probability of tumor progression. Cancer Res 65:9861–9867

    Article  PubMed  CAS  Google Scholar 

  27. Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, Matsuda H, Tsujimoto Y (1998) Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc Natl Acad Sci USA 95:1455–1459

    Article  PubMed  CAS  Google Scholar 

  28. Geraci MW, Moore M, Gesell T, Yeager ME, Alger L, Golpon H, Gao B, Loyd JE, Tuder RM, Voelkel NF (2001) Gene expression patterns in the lungs of patients with primary PAH: a gene microarray analysis. Circ Res 88:555–562

    PubMed  CAS  Google Scholar 

  29. Platoshyn O, Golovina VA, Bailey CL, Limsuwan A, Krick S, Juhaszova M, Seiden JE, Rubin LJ, Yuan JX (2000) Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol 279:C1540–C1549

    PubMed  CAS  Google Scholar 

  30. Yuan JX, Rubin LJ et al (2001) Pathophysiology of PAH. In: Scharf SM (ed) Respiratory–circulatory interactions in health and disease. Marcel Dekker, New York, pp 447–477

    Google Scholar 

  31. Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265

    Article  PubMed  CAS  Google Scholar 

  32. Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca2 + entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746–H755

    PubMed  CAS  Google Scholar 

  33. Michiels C, Minet E, Michel G, Mottet D, Piret JP, Raes M (2001) HIF-1 and AP-1 cooperate to increase gene expression in hypoxia: role of MAP kinases. IUBMB Life 52:49–53

    Article  PubMed  CAS  Google Scholar 

  34. Zhang X, Wrzeszczynska MH, Horvath CM, Darnell JE Jr (1999) Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol Cell Biol 19:7138–7146

    PubMed  CAS  Google Scholar 

  35. Rabinovitch M (1998) Elastase and the pathobiology of unexplained PAH. Chest 114:213S–224S

    Article  PubMed  CAS  Google Scholar 

  36. Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O, Thistlethwaite PA, Kriett JM, Yung G, Rubin LJ, Yuan JX (2003) Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 285:L740–L754

    PubMed  CAS  Google Scholar 

  37. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487–9492

    Article  PubMed  CAS  Google Scholar 

  38. Bortner CD, Hughes FM Jr, Cidlowski JA (1997) A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 272:32436–32442

    Article  PubMed  CAS  Google Scholar 

  39. Bortner CD, Cidlowski JA (1999) Caspase independent/dependent regulation of K+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 274:21953–21962

    Article  PubMed  CAS  Google Scholar 

  40. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  41. He H, Lam M, McCormick TS, Distelhorst CW (1997) Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol 138:1219–1228

    Article  PubMed  CAS  Google Scholar 

  42. Kirchengast M, Munter K (1999) Endothelin-1 and endothelin receptor antagonists in cardiovascular remodeling. Proc Soc Exp Biol Med 221:312–325

    Article  PubMed  CAS  Google Scholar 

  43. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE, Knowles JA (2000) Familial primary PAH (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67:737–744

    Article  PubMed  CAS  Google Scholar 

  44. Gurbanov E, Shiliang X (2006) The key role of apoptosis in the pathogenesis and treatment of PAH. Eur J Cardiothorac Surg 30:499–507

    Article  PubMed  Google Scholar 

  45. Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodeling. N Engl J Med 330:1431–1438

    Article  PubMed  CAS  Google Scholar 

  46. Cowan KN, Heilbut A, Humpl T, Lam C, Ito S, Rabinovitch M (2000) Complete reversal of fatal PAH in rats by a serine elastase inhibitor. Nat Med 6:698–702

    Article  PubMed  CAS  Google Scholar 

  47. Cowan KN, Jones PL, Rabinovitch M (1999) Regression of hypertrophied rat pulmonary arteries in organ culture is associated with suppression of proteolytic activity, inhibition of tenascin-C, and smooth muscle cell apoptosis. Circ Res 84:1223–1233

    PubMed  CAS  Google Scholar 

  48. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691

    Article  PubMed  CAS  Google Scholar 

  49. Rai PR, Cool CD, King JA, Stevens T, Burns N, Winn RA, Kasper M, Voelkel NF (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178(6):558–564

    Article  PubMed  Google Scholar 

  50. Ali O, Wharton J, Gibbs JS, Howard L, Wilkins MR (2007) Emerging therapies for pulmonary arterial hypertension. Expert Opin Investig Drugs 16:803–818

    Article  PubMed  CAS  Google Scholar 

  51. Weigand L, Sylvester J, Shimoda L (2006) Mechanisms of endothelin-1-induced contraction in pulmonary arteries from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 290:L284–L290

    Article  PubMed  CAS  Google Scholar 

  52. Barman S (2007) Vasoconstrictor effect of endothelin-1 on hypertensive pulmonary arterial smooth muscle involves Rho kinase and protein kinase C. Am J Physiol Lung Cell Mol Physiol 293:L472–L479

    Article  PubMed  CAS  Google Scholar 

  53. Liu Y, Suzuki Y, Day R, Fanburg BL (2004) Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ Res 95:579–586

    Article  PubMed  CAS  Google Scholar 

  54. Li M, Liu Y, Dutt P, Fanburg B, Toksoz D (2007) Inhibition of serotonin-induced mitogenesis, migration, and ERK MAPK nuclear translocation in vascular smooth muscle cells by atorvastatin. Am J Physiol Lung Cell Mol Physiol 293:L463–L471

    Article  PubMed  CAS  Google Scholar 

  55. Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK (2002) Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106:57–62

    Article  PubMed  CAS  Google Scholar 

  56. Nagaoka T, Morio Y, Casanova N, Bauer N, Gebb S, McMurtry I, Oka M (2004) Rho/Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 287:L665–L672

    Article  PubMed  CAS  Google Scholar 

  57. Oka M, Homma N, Taraseviciene-Stewart L, Morris KG, Kraskauskas D, Burns N, Voelkel NF, McMurtry IF (2007) Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 100:923–929

    Article  PubMed  CAS  Google Scholar 

  58. Fagan K, Oka M, Bauer NR, Gebb SA, Ivy DD, Morris KG, McMurtry IF (2004) Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic PAH in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287:L656–L664

    Article  PubMed  CAS  Google Scholar 

  59. Abe K, Shimokawa H, Morikawa K, Uwatoku T, Oi K, Matsumoto Y, Hattori T, Nakashima Y, Kaibuchi K, Sueishi K, Takeshit A (2004) Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal PAH in rats. Circ Res 94:385–393

    Article  PubMed  CAS  Google Scholar 

  60. Abe K, Tawara S, Oi K, Hizume T, Uwatoku T, Fukumoto Y, Kaibuchi K, Shimokawa H (2006) Long term inhibition of Rho-kinase ameliorates hypoxia-induced PAH in mice. J Cardiovasc Pharmacol 48:280–285

    Article  PubMed  CAS  Google Scholar 

  61. Jiang B, Tawara S, Abe K, Takaki A, Fukumoto Y, Shimokawa H (2007) Acute vasodilator effect of fasudil, a Rho-kinase inhibitor, in monocrotaline-induced PAH in rats. J Cardiovasc Pharmacol 49:85–89

    Article  PubMed  CAS  Google Scholar 

  62. Li F, Xia W, Li A, Zhao CF, Sun RP (2007) Inhibition of rho kinase attenuates high flow induced PAH in rats. Chin Med J 120:22–29

    PubMed  CAS  Google Scholar 

  63. Li F, Xia W, Li A, Zhao CF, Sun RP (2007) Long-term inhibition of Rho kinase with fasudil attenuates high flow induced pulmonary artery remodeling in rats. Pharmacol Res 55:64–71

    Article  PubMed  CAS  Google Scholar 

  64. Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, Abe K, Takeshita A, Shimokawa H (2005) Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe PAH. Heart 91:391–392

    Article  PubMed  CAS  Google Scholar 

  65. Ishikura K, Yamada N, Ito M, Ota S, Nakamura M, Isaka N, Nakano T (2006) Beneficial acute effects of rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J 70:174–178

    Article  PubMed  CAS  Google Scholar 

  66. Nishimura T, Faul J, Berry G, Vaszar LT, Qiu D, Pearl RG, Kao PN (2002) Simvastatin attenuates smooth muscle neointimal proliferation and PAH in rats. Am J Respir Crit Care Med 166:1403–1408

    Article  PubMed  Google Scholar 

  67. Hu H, Sung A, Zhao G, Shi L, Qiu D, Nishimura T, Kao PN (2006) Simvastatin enhances bone morphogenetic protein receptor type II expression. Biochem Biophys Res Commun 339:59–64

    Article  PubMed  CAS  Google Scholar 

  68. Shi J, Wei L (2007) Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp 55:61–75

    Article  CAS  Google Scholar 

  69. Shibata R, Kai H, Seki Y, Kusaba K, Takemiya K, Koga M, Jalalidin A, Tokuda K, Tahara N, Niiyama H, Nagata T, Kuwahara F, Imaizumi T (2003) Rho-kinase inhibition reduces neointima formation after vascular injury by enhancing Bax expression and apoptosis. J Cardiovasc Pharmacol 42(Suppl 1):S43–S47

    PubMed  CAS  Google Scholar 

  70. Matsumoto Y, Uwatoku T, Oi K, Abe K, Hattori T, Morishige K, Eto Y, Fukumoto Y, Nakamura K, Shibata Y, Matsuda T, Takeshita A, Shimokawa H (2004) Long-term inhibition of Rho-kinase suppresses neointimal formation after stent implantation in porcine coronary arteries: involvement of multiple mechanisms. Arterioscler Thromb Vasc Biol 24:181–186

    Article  PubMed  CAS  Google Scholar 

  71. Shibuya M, Hirai S, Seto M, Satoh S, Ohtomo E, Fasudil Ischemic Stroke Study Group (2005) Effects of fasudil in acute ischemic stroke: results of a prospective placebo-controlled double-blind trial. J Neurol Sci 238(1–2):31–39

    Article  PubMed  CAS  Google Scholar 

  72. Furuyama T, Komori K, Shimokawa H, Matsumoto Y, Uwatoku T, Hirano K, Maehara Y (2006) Long-term inhibition of Rho kinase suppresses intimal thickening in autologous vein grafts in rabbits. J Vasc Surg 43:1249–1256

    Article  PubMed  Google Scholar 

  73. Nishimura T, Vaszar LT, Faul JL, Zhao G, Berry GJ, Shi L, Qiu D, Benson G, Pearl RG, Kao PN (2003) Simvastatin rescues rats from fatal PAH by inducing apoptosis of neointimal smooth muscle cells. Circulation 108:1640

    Article  PubMed  CAS  Google Scholar 

  74. Laufs U, Marra D, Node K, Liao JK (1999) 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation preventing rho GTPase-induced down-regulation of p27 (Kip 1). J Biol Chem 274:21926–21931

    Article  PubMed  CAS  Google Scholar 

  75. Indolfi C, Cioppa A, Stabile E, Di Lorenzo E, Esposito G, Pisani A, Leccia A, Cavuto L, Stingone AM, Chieffo A, Capozzolo C, Chiariello M (2000) Effects of hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin on smooth muscle cell proliferation in vitro and neointimal formation in vivo after vascular injury. J Am Coll Cardiol 35:214–221

    Article  PubMed  CAS  Google Scholar 

  76. Tobert JA (1987) New developments in lipid-lowering therapy: the role of inhibitors of hydroxymethylglutaryl-coenzyme A reductase. Circulation 76:534–538

    PubMed  CAS  Google Scholar 

  77. Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R, Archer SL (2002) Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic PAH in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105:244–250

    Article  PubMed  CAS  Google Scholar 

  78. McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses PAH by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830–840

    Article  PubMed  CAS  Google Scholar 

  79. Stacpoole PW, Kerr DS, Barnes C, Bunch ST, Carney PR, Fennell EM, Felitsyn NM, Gilmore RL, Greer M, Henderson GN, Hutson AD, Neiberger RE, O’Brien RG, Perkins LA, Quisling RG, Shroads AL, Shuster JJ, Silverstein JH, Theriaque DW, Valenstein E (2006) Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 117:1519–1531

    Article  PubMed  Google Scholar 

  80. Liu H, Nishitoh H, Ichijo H, Kyriakis JM (2000) Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptorassociated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 20:2198–2208

    Article  PubMed  CAS  Google Scholar 

  81. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H (2002) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO J 2:222–228

    Google Scholar 

  82. Izumi Y, Kim S, Yoshiyama M, Izumiya Y, Yoshida K, Matsuzawa A, Koyama H, Nishizawa Y, Ichijo H, Yoshikawa J, Iwao H (2003) Activation of apoptosis signal-regulating kinase 1 in injured artery and its critical role in neointimal hyperplasia. Circulation 108:2812–2818

    Article  PubMed  CAS  Google Scholar 

  83. Hart CM (2008) The role of PPARgamma in pulmonary vascular disease. J Investig Med 56:518–521

    PubMed  CAS  Google Scholar 

  84. Ameshima S, Golpon H, Cool CD, Chan D, Vandivier RW, Gardai SJ, Wick M, Nemenoff RA, Geraci MW, Voelkel NF (2003) Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in PAH and affects endothelial cell growth. Circ Res 92:1162–1169

    Article  PubMed  CAS  Google Scholar 

  85. Matsuda Y, Hoshikawa Y, Ameshima S, Suzuki S, Okada Y, Tabata T, Sugawara T, Matsumura Y, Kondo T (2005) Effects of peroxisome proliferator-activated receptor gamma ligands on monocrotaline-induced PAH in rats. Nihon Kokyuki Gakkai Zasshi 43:283–288

    PubMed  Google Scholar 

  86. Crossno JT Jr, Garat CV, Reusch JE, Morris KG, Dempsey EC, McMurtry IF, Stenmark KR, Klemm DJ (2007) Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol 292:L885–L897

    Article  PubMed  CAS  Google Scholar 

  87. Nisbet R, Kleinhenz D, Thorson H et al (2007) Rosiglitazone attenuates chronic hypoxia-induced PAH. Am J Respir Crit Care Med 175:A43

    Google Scholar 

  88. Calnek DS, Mazzella L, Roser S, Roman J, Hart CM (2003) Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 23:52–57

    Article  PubMed  CAS  Google Scholar 

  89. Polikandriotis JA, Mazzella LJ, Rupnow HL, Hart CM (2005) Peroxisome proliferator-activated receptor gamma ligands stimulate endothelial nitric oxide production through distinct peroxisome proliferator-activated receptor gamma-dependent mechanisms. Arterioscler Thromb Vasc Biol 25:1810–1816

    Article  PubMed  CAS  Google Scholar 

  90. Hwang J, Kleinhenz DJ, Lassegue B, Griendling KK, Dikalov S, Hart CM (2005) Peroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol 288:C899–C905

    Article  PubMed  CAS  Google Scholar 

  91. Hwang J, Kleinhenz DJ, Rupnow HL, Campbell AG, Thulé PM, Sutliff RL, Hart CM (2007) The PPAR gamma ligand, rosiglitazone, reduces vascular oxidative stress and NADPH oxidase expression in diabetic mice. Vascul Pharmacol 46:456–462

    Article  PubMed  CAS  Google Scholar 

  92. Singh S, Loke YK (2008) The safety of rosiglitazone in the treatment of type 2 diabetes. Expert Opin Drug Saf 7(5):579–585

    Article  PubMed  CAS  Google Scholar 

  93. Taraseviciene-Stewart L, Scerbavicius R, Stewart JM, Gera L, Demura Y, Cool C, Kasper M, Voelkel NF (2005) Treatment of severe PAH: a bradykinin receptor 2 agonist B9972 causes reduction of pulmonary artery pressure and right ventricular hypertrophy. Peptides 26:1292–1300

    Article  PubMed  CAS  Google Scholar 

  94. Heitsch H (2000) Bradykinin B2 receptor as a potential therapeutic target. Drug News Perspect 13:213–225

    PubMed  CAS  Google Scholar 

  95. Merklinger SL, Jones PL, Martinez EC, Rabinovitch M (2005) Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with PAH. Circulation 112:423–431

    Article  PubMed  CAS  Google Scholar 

  96. Blanc-Brude OP, Yu J, Simosa H, Conte MS, Sessa WC, Altieri DC (2002) Inhibitor of apoptosis protein survivin regulates vascular injury. Nat Med 8(9):987–994

    Article  PubMed  CAS  Google Scholar 

  97. Altieri DC (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3(1):46–54

    Article  PubMed  CAS  Google Scholar 

  98. Mita AC, Mita MM, Nawrocki ST, Giles FJ (2008) Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 14(16):5000–5005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 30972958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-long Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Jb., Liu, Yl., Sun, Pw. et al. Novel Strategy for Treatment of Pulmonary Arterial Hypertension: Enhancement of Apoptosis. Lung 188, 179–189 (2010). https://doi.org/10.1007/s00408-010-9233-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-010-9233-8

Keywords

Navigation