Skip to main content

Advertisement

Log in

The evolving role of molecular pathology in the diagnosis of salivary gland tumours with potential pitfalls

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Salivary gland tumors are diagnostically challenging owing to the morphological diversity within any tumor type and overlapping histomorphology and immunohistochemistry amongst different tumours. In past two decades, rapid progress has been made in the field of understanding the pathogenesis of these tumours with the discovery of many tumour specific translocations and rearrangements. This includes CRTC1-MAML2 and CRTC-MAML2 in mucoepidermoid carcinoma, MYBNFIB and MYBL1-NFIB fusions in adenoid cystic carcinoma, PLAG1 and HMGA2 in pleomorphic adenoma, ETV6-NTRK3 in secretory carcinoma, NR4A3 rearrangements in acinic cell carcinoma, PRKD1 mutations in polymorphous adenocarcinoma and EWSR1-ATF1 in clear cell carcinoma. This review is a lens for progress made till date in the molecular pathology of salivary gland tumours with a special focus on their role as diagnostic tools and implications on clinical management of the patient as prognostic and predictive markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MEC::

Mucoepidermoid Carcinoma

AdCC::

Adenoid Cystic Carcinoma

AciCC::

Acinic Cell Carcinoma

PA::

Pleomorphic Adenoma

BCA::

Basal Cell Adenoma

PAC::

Polymorphous Adenocarcinoma

SDC::

Salivary Duct Carcinoma

SC::

Secretory Carcinoma

IC::

Intraductal Carcinoma

CCC::

Clear Cell Carcinoma

EMC::

Epithelial-Myopeithelial Carcinoma

CCMC::

Clear Cell Myopeithelial Carcinoma

CA Ex-PA::

Carcinoma Ex Pleomorphic

CAMSG::

Cribriform Adenocarcinoma Of Minor Salivary Glands

BCAC::

Basal cell adenocarcinoma

References

  1. World Health Organization Classification of Head and Neck Tumours. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Sootweg P (eds) Tumours of the salivary glands, 4th edn. IARC Press, Lyon, 2017, p 159–202.

  2. NCCN clinical practice guidelines for treatment of head and neck cancers, Version 3.2021. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1437

  3. Toper MH, Sarioglu S (2021) Molecular pathology of salivary gland neoplasms: diagnostic, prognostic, and predictive perspective. Adv Anat Pathol 28(2):81–93. https://doi.org/10.1097/PAP.0000000000000291

    Article  CAS  PubMed  Google Scholar 

  4. Skálová A, Stenman G, Simpson RHW et al (2018) The role of molecular testing in the differential diagnosis of salivary gland carcinomas. Am J Surg Pathol 42(2):e11–e27

    Article  Google Scholar 

  5. Tonon G, Modi S, Wu L et al (2003) t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet 33(2):208–213. https://doi.org/10.1038/ng1083

    Article  CAS  PubMed  Google Scholar 

  6. Möller E, Stenman G, Mandahl N et al (2008) POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 215(1):78–86. https://doi.org/10.1002/path.2327

    Article  CAS  PubMed  Google Scholar 

  7. Jee KJ, Persson M, Heikinheimo K et al (2013) Genomic profiles and CRTC1-MAML2 fusion distinguish different subtypes of mucoepidermoid carcinoma. Mod Pathol 26(2):213–222. https://doi.org/10.1038/modpathol.2012

    Article  CAS  PubMed  Google Scholar 

  8. Chen Z, Chen J, Gu Y et al (2014) Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene 33(29):3869–3877. https://doi.org/10.1038/onc.2013.348

    Article  CAS  PubMed  Google Scholar 

  9. Tirado Y, Williams MD, Hanna EY, Kaye FJ, Batsakis JG, El-Naggar AK (2007) CRTC1/MAML2 fusion transcript in high grade mucoepidermoid carcinomas of salivary and thyroid glands and Warthin’s tumors: implications for histogenesis and biologic behavior. Genes Chromosomes Cancer 46(7):708–715. https://doi.org/10.1002/gcc.20458

    Article  CAS  PubMed  Google Scholar 

  10. Ishibashi K, Ito Y, Masaki A et al (2015) Warthin-like mucoepidermoid carcinoma: a combined study of fluorescence in situ hybridization and whole-slide imaging. Am J Surg Pathol 39(11):1479–1487. https://doi.org/10.1097/PAS.0000000000000507

    Article  PubMed  Google Scholar 

  11. Zhang C, Gu T, Hu Y et al (2021) Reevaluation of salivary lymphadenoma: a subgroup identified as Warthin-like mucoepidermoid carcinoma following molecular investigation for MAML2 rearrangement. Arch Pathol Lab Med 145(6):744–752. https://doi.org/10.5858/arpa.2019-0702-OA

    Article  CAS  PubMed  Google Scholar 

  12. Freiberger SN, Brada M, Fritz C et al (2021) SalvGlandDx - a comprehensive salivary gland neoplasm specific next generation sequencing panel to facilitate diagnosis and identify therapeutic targets. Neoplasia 23(5):473–487. https://doi.org/10.1016/j.neo.2021.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cipriani NA, Lusardi JJ, McElherne J et al (2019) Mucoepidermoid carcinoma: a comparison of histologic grading systems and relationship to MAML2 rearrangement and prognosis. Am J Surg Pathol 43(7):885–897. https://doi.org/10.1097/PAS.0000000000001252

    Article  PubMed  PubMed Central  Google Scholar 

  14. Choi S, Cho J, Lee SE et al (2021) Adenocarcinoma of the minor salivary gland with concurrent MAML2 and EWSR1 alterations. J Pathol Transl Med 55(2):132–138. https://doi.org/10.4132/jptm.2020.12.11

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mitani Y, Liu B, Rao PH et al (2016) Novel MYBL1 gene rearrangements with recurrent MYBL1-NFIB fusions in salivary adenoid cystic carcinomas lacking t(6;9) translocations. Clin Cancer Res 22(3):725–733. https://doi.org/10.1158/1078-0432

    Article  CAS  PubMed  Google Scholar 

  16. Ho AS, Ochoa A, Jayakumaran G et al (2019) Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. J Clin Invest 129(10):4276–4289. https://doi.org/10.1172/jci128227

    Article  PubMed  PubMed Central  Google Scholar 

  17. de Almeida-Pinto YD, Costa SFDS, de Andrade BAB et al (2019) t(6;9)(MYB-NFIB) in head and neck adenoid cystic carcinoma: A systematic review with meta-analysis. Oral Dis 25(5):1277–1282. https://doi.org/10.1111/odi.12984

    Article  PubMed  Google Scholar 

  18. Tetsu O, Phuchareon J, Chou A, Cox DP, Eisele DW, Jordan RC (2010) Mutations in the c-Kit gene disrupt mitogen-activated protein kinase signaling during tumor development in adenoid cystic carcinoma of the salivary glands. Neoplasia 12(9):708–717. https://doi.org/10.1593/neo.10356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li B, Jie W, He H (2020) Myb immunohistochemical staining and fluorescence in situ hybridization in salivary rare basaloid lesions. Front Oncol 30(10):870. https://doi.org/10.3389/fonc.2020.00870

    Article  Google Scholar 

  20. Owosho AA, Adesina OM, Odujoko O et al (2021) MYB-NFIB translocation by FISH in adenoid cystic carcinoma of the head and neck in nigerian patients: a preliminary report. Head Neck Pathol 15(2):433–437. https://doi.org/10.1007/s12105-020-01214-3

    Article  PubMed  Google Scholar 

  21. Chae YK, Chung SY, Davis AA et al (2015) Adenoid cystic carcinoma: current therapy and potential therapeutic advances based on genomic profiling. Oncotarget 6(35):37117–37134. https://doi.org/10.18632/oncotarget.5076

    Article  PubMed  PubMed Central  Google Scholar 

  22. Haller F, Skálová A, Ihrler S et al (2019) Nuclear NR4A3 immunostaining is a specific and sensitive novel marker for acinic cell carcinoma of the salivary glands. Am J Surg Pathol 43:1264–1272. https://doi.org/10.1097/PAS.0000000000001279

    Article  PubMed  Google Scholar 

  23. Andreasen S, Varma S, Barasch N et al (2019) The HTN3-MSANTD3 fusion gene defines a subset of acinic cell carcinoma of the salivary gland. Am J Surg Pathol 43(4):489–496. https://doi.org/10.1097/PAS.0000000000001200

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wong KS, Mariño-Enriquez A, Hornick JL, Jo VY (2021) NR4A3 immunohistochemistry reliably discriminates acinic cell carcinoma from mimics. Head Neck Pathol 15(2):425–432. https://doi.org/10.1007/s12105-020-01213-4

    Article  PubMed  Google Scholar 

  25. Skálová A, Vanecek T, Simpson RH et al (2016) Mammary analogue secretory carcinoma of salivary glands: molecular analysis of 25 ETV6 gene rearranged tumors with lack of detection of classical ETV6-NTRK3 fusion transcript by standard RT-PCR: report of 4 cases harboring ETV6-X gene fusion. Am J Surg Pathol 40(1):3–13. https://doi.org/10.1097/PAS.0000000000000537

    Article  PubMed  Google Scholar 

  26. Marchiò C, Scaltriti M, Ladanyi M et al (2019) ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol 30(9):1417–1427. https://doi.org/10.1093/annonc/mdz204

    Article  PubMed  Google Scholar 

  27. Xu B, Al H, Rasheed MR, Antonescu CR et al (2020) Pan-Trk immunohistochemistry is a sensitive and specific ancillary tool for diagnosing secretory carcinoma of the salivary gland and detecting ETV6-NTRK3 fusion. Histopathology 76(3):375–382. https://doi.org/10.1111/his.13981

    Article  PubMed  Google Scholar 

  28. Antonescu CR, Katabi N, Zhang L et al (2011) EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer 50(7):559–570. https://doi.org/10.1002/gcc.20881

    Article  CAS  PubMed  Google Scholar 

  29. Bilodeau EA, Weinreb I, Antonescu CR, Zhang L et al (2013) Clear cell odontogenic carcinomas show EWSR1 rearrangements: a novel finding and a biological link to salivary clear cell carcinomas. Am J Surg Pathol 37:1001–1005. https://doi.org/10.1097/PAS.0b013e31828a6727

    Article  PubMed  Google Scholar 

  30. Chapman E, Skalova A, Ptakova N et al (2018) Molecular profiling of hyalinizing clear cell carcinomas revealed a subset of tumors harboring a novel EWSR1-CREM fusion: report of 3 cases. Am J Surg Pathol 42(9):1182–1189. https://doi.org/10.1097/PAS.0000000000001114

    Article  PubMed  Google Scholar 

  31. Skálová A, Weinreb I, Hyrcza M et al (2015) Clear cell myoepithelial carcinoma of salivary glands showing EWSR1 rearrangement: molecular analysis of 94 salivary gland carcinomas with prominent clear cell component. Am J Surg Pathol 39(3):338–348. https://doi.org/10.1097/PAS.0000000000000364

    Article  PubMed  Google Scholar 

  32. Skálová A, Agaimy A, Vanecek T et al (2021) Molecular profiling of clear cell myoepithelial carcinoma of salivary glands with EWSR1 rearrangement identifies frequent PLAG1 gene fusions but no EWSR1 fusion transcripts. Am J Surg Pathol 45(1):1–13. https://doi.org/10.1097/PAS.0000000000001591

    Article  PubMed  Google Scholar 

  33. Urano M, Nakaguro M, Yamamoto Y et al (2019) Diagnostic significance of HRAS mutations in epithelial-myoepithelial carcinomas exhibiting a broad histopathologic spectrum. Am J Surg Pathol 43(7):984–994. https://doi.org/10.1097/PAS.0000000000001258

    Article  PubMed  Google Scholar 

  34. Astrom AK, Voz ML, Kas K et al (1999) Conserved mechanism of PLAG1 activation in salivary gland tumors with and without chromosome 8q12 abnormalities: identification of SII as a new fusion partner gene. Cancer Res 59(4):918–923

    CAS  PubMed  Google Scholar 

  35. Voz ML, Aström AK, Kas K, Mark J, Stenman G, Van de Ven WJ (1998) The recurrent translocation t(5;8)(p13;q12) in pleomorphic adenomas results in upregulation of PLAG1 gene expression under control of the LIFR promoter. Oncogene 16(11):1409–1416. https://doi.org/10.1038/sj.onc.1201660

    Article  CAS  PubMed  Google Scholar 

  36. Geurts JM, Schoenmakers EF, Röijer E, Stenman G, Van de Ven WJ (1997) Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res 57(1):13–17

    CAS  PubMed  Google Scholar 

  37. Katabi N, Ghossein R, Ho A et al (2015) Consistent PLAG1 and HMGA2 abnormalities distinguish carcinoma ex-pleomorphic adenoma from its de novo counterparts. Hum Pathol 46(1):26–33. https://doi.org/10.1016/j.humpath.2014.08.017

    Article  CAS  PubMed  Google Scholar 

  38. Katabi N, Xu B, Jungbluth AA et al (2018) PLAG1 immunohistochemistry is a sensitive marker for pleomorphic adenoma: a comparative study with PLAG1 genetic abnormalities. Histopathology 72(2):285–293. https://doi.org/10.1111/his.13341

    Article  PubMed  Google Scholar 

  39. Mito JK, Jo VY, Chiosea SI, Dal Cin P, Krane JF (2017) HMGA2 is a specific immunohistochemical marker for pleomorphic adenoma and carcinoma ex-pleomorphic adenoma. Histopathology 71(4):511–521. https://doi.org/10.1111/his.13246

    Article  PubMed  Google Scholar 

  40. Xu B, Barbieri AL, Bishop JA et al (2020) Histologic classification and molecular signature of polymorphous adenocarcinoma (PAC) and cribriform adenocarcinoma of salivary gland (CASG): an international interobserver study. Am J Surg Pathol 44(4):545–552. https://doi.org/10.1097/PAS.0000000000001431

    Article  PubMed  PubMed Central  Google Scholar 

  41. Andreasen S, Melchior LC, Kiss K et al (2018) The PRKD1 E710D hotspot mutation is highly specific in separating polymorphous adenocarcinoma of the palate from adenoid cystic carcinoma and pleomorphic adenoma on FNA. Cancer Cytopathol 126(4):275–281. https://doi.org/10.1002/cncy.21959

    Article  CAS  PubMed  Google Scholar 

  42. Chiosea SI, Thompson LD, Weinreb I et al (2016) Subsets of salivary duct carcinoma defined by morphologic evidence of pleomorphic adenoma, PLAG1 or HMGA2 rearrangements, and common genetic alterations. Cancer 122(20):3136–3144. https://doi.org/10.1002/cncr.30179

    Article  CAS  PubMed  Google Scholar 

  43. Xu B, Dogan S, Al Rasheed MRH et al (2019) Androgen receptor immunohistochemistry in salivary duct carcinoma: a retrospective study of 188 cases focusing on tumoral heterogeneity and temporal concordance. Hum Pathol 93:30–36. https://doi.org/10.1016/j.humpath.2019.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakaguro M, Tanigawa M, Hirai H, Yamamoto Y, Urano M, Takahashi RH, Sukeda A, Okumura Y, Honda S, Tasaki K, Shimizu A, Tsukahara K, Tada Y, Matsubayashi J, Faquin WC, Sadow PM, Nagao T (2021) The diagnostic utility of RAS Q61R mutation-specific immunohistochemistry in epithelial-myoepithelial carcinoma. Am J Surg Pathol 45(7):885–894. https://doi.org/10.1097/PAS.0000000000001673

    Article  PubMed  PubMed Central  Google Scholar 

  45. Weinreb I, Bishop JA, Chiosea SI et al (2018) Recurrent RET gene rearrangements in intraductal carcinomas of salivary gland. Am J Surg Pathol 42(4):442–452

    Article  Google Scholar 

  46. Jo VY, Sholl LM, Krane JF (2016) Distinctive patterns of CTNNB1 (β-catenin) alterations in salivary gland basal cell adenoma and basal cell adenocarcinoma. Am J Surg Pathol 40(8):1143–1150. https://doi.org/10.1097/PAS.0000000000000669

    Article  PubMed  Google Scholar 

  47. Cavalcante RB, Nonaka CFW, Santos HBP, Rabenhorst SHB, Pereira Pinto L, de Souza LB (2018) Assessment of CTNNB1 gene mutations and β-catenin immunoexpression in salivary gland pleomorphic adenomas and adenoid cystic carcinomas. Virchows Arch 472(6):999–1005. https://doi.org/10.1007/s00428-018-2335-z

    Article  CAS  PubMed  Google Scholar 

  48. Rito M, Mitani Y, Bell D et al (2018) Frequent and differential mutations of the CYLD gene in basal cell salivary neoplasms: linkage to tumor development and progression. Mod Pathol 31(7):1064–1072. https://doi.org/10.1038/s41379-018-0018-6

    Article  CAS  PubMed  Google Scholar 

  49. Nakaguro M, Urano M, Ogawa I et al (2020) Histopathological evaluation of minor salivary gland papillary-cystic tumours: focus on genetic alterations in sialadenoma papilliferum and intraductal papillary mucinous neoplasm. Histopathology 76(3):411–422. https://doi.org/10.1111/his.13990

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Sincere gratitude to Dr Aanchal Kakkar, Associate Professor, Pathology, All India Institute of Medical Sciences, New Delhi for FISH analysis

Funding

There is no source of funding to disclose.

Author information

Authors and Affiliations

Authors

Contributions

KK: conception and design of manuscript and research of literature and preparation of manuscript; SM: critical revision of manuscript for intellectual content; SV, NB: critical revision of manuscript for intellectual content; PT administrative support and supervision, HD, SD, SK: clinical input to the manuscript.

Corresponding author

Correspondence to Kanwalpreet Kaur.

Ethics declarations

Conflict of interest

There is no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, K., Mehta, S., Vanik, S. et al. The evolving role of molecular pathology in the diagnosis of salivary gland tumours with potential pitfalls. Eur Arch Otorhinolaryngol 279, 3769–3783 (2022). https://doi.org/10.1007/s00405-022-07326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-022-07326-6

Keywords

Navigation