Skip to main content

Advertisement

Log in

Promotion of cutaneous diabetic wound healing by subcutaneous administration of Wharton's jelly mesenchymal stem cells derived from umbilical cord

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Wound healing is a major problem in diabetic patients, and current treatments have been confronted with limited success. The present study examined the benefit of Wharton's jelly mesenchymal stem cells (WJ-MSCs) derived from the human umbilical cord (UC) in wound healing in diabetic rats. Thirty days after inducing diabetes, a circular excision was created in the skin of rats, and the treatments were performed for 21 days. Two groups were studied, which included the Control group and WJ-MSCs group. The studied groups were sampled on the 7th, 14th, and 21st days after wounding. Histological ultrasound imaging of dermis and epidermis in the wound area for thickness and density measurement and skin elasticity were evaluated. Our results on post-wounding days 7, 14, and 21 showed that the wound closure, thickness, and density of new epidermis and dermis, as well as skin elasticity in the healed wound, were significantly higher in the WJ-MSCs group compared to the Control group. Subcutaneous administration of WJ-MSCs in diabetic wounds can effectively accelerate healing. Based on this, these cells can be used along with other treatment methods in the healing of different types of chronic wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ramachandran A, Snehalatha C, Shetty AS, Nanditha A (2012) Trends in prevalence of diabetes in Asian countries. World J Diabetes 3(6):110–117

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bondor CI, Veresiu IA, Florea B, Vinik EJ, Vinik AI, Gavan NA (2016) Epidemiology of diabetic foot ulcers and amputations in romania: results of a cross-sectional quality of life questionnaire based survey. J Diabetes Res 2016:5439521

    Article  PubMed  PubMed Central  Google Scholar 

  3. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321

    Article  PubMed  Google Scholar 

  4. Qing C (2017) The molecular biology in wound healing & non-healing wound. Chinese J Traumatol 20(4):189–193

    Article  Google Scholar 

  5. Nasiry D, Khalatbary AR, Abdollahifar MA, Amini A, Bayat M, Noori A et al (2021) Engraftment of bioengineered three-dimensional scaffold from human amniotic membrane-derived extracellular matrix accelerates ischemic diabetic wound healing. Arch Dermatol Res 313(7):567–582

    Article  CAS  PubMed  Google Scholar 

  6. Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care 4(9):560–582

    Article  Google Scholar 

  7. Jeffcoate WJ, Price PE, Phillips CJ, Game FL, Mudge E, Davies S et al (2009) Randomised controlled trial of the use of three dressing preparations in the management of chronic ulceration of the foot in diabetes. Health Technol Assessm (Winchester, England). 13(54):1–86

    CAS  Google Scholar 

  8. Greaves NS, Iqbal SA, Baguneid M, Bayat A (2013) The role of skin substitutes in the management of chronic cutaneous wounds. Wound Repair Regener 21(2):194–210

    Article  Google Scholar 

  9. Moura LI, Dias AM, Carvalho E, de Sousa HC (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment–a review. Acta Biomater 9(7):7093–7114

    Article  CAS  PubMed  Google Scholar 

  10. Perez-Favila A, Martinez-Fierro ML, Rodriguez-Lazalde JG, Cid-Baez MA, Zamudio-Osuna MJ, Martinez-Blanco MDR et al (2019) Current therapeutic strategies in diabetic foot ulcers. Medicina (Kaunas) 55(11):714

    Article  PubMed  Google Scholar 

  11. Wu Q, Chen B, Liang Z (2016) Mesenchymal stem cells as a prospective therapy for the diabetic foot. Stem Cells Int 2016:4612167

    Article  PubMed  PubMed Central  Google Scholar 

  12. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J (2019) Mesenchymal stem cells for regenerative medicine. Cells 8(8):886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rohban R, Pieber TR (2017) Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int 2017:5173732

    Article  PubMed  PubMed Central  Google Scholar 

  14. Abdollahifar MA, Azad N, Faraji Sani M, Raoofi A, Abdi S, Aliaghaei A et al (2021) (2021) Impaired spermatogenesis caused by busulfan is partially ameliorated by treatment with conditioned medium of adipose tissue derived mesenchymal stem cells. Biotechnic Histochem. https://doi.org/10.1080/105202951905182

    Article  Google Scholar 

  15. Khosrotehrani K (2013) Mesenchymal stem cell therapy in skin: why and what for? Exp Dermatol 22(5):307–310

    Article  PubMed  Google Scholar 

  16. Liu S, Yuan M, Hou K, Zhang L, Zheng X, Zhao B et al (2012) Immune characterization of mesenchymal stem cells in human umbilical cord Wharton’s jelly and derived cartilage cells. Cell Immunol 278(1–2):35–44

    Article  CAS  PubMed  Google Scholar 

  17. Nekanti U, Rao VB, Bahirvani AG, Jan M, Totey S, Ta M (2010) Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Developm 19(1):117–130

    Article  CAS  Google Scholar 

  18. Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK et al (2011) Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev Rep 7(1):1–16

    Article  CAS  PubMed  Google Scholar 

  19. Choi M, Lee HS, Naidansaren P, Kim HK, Cha JH et al (2013) Proangiogenic features of Wharton’s jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels. Int J Biochem Cell Biol 45(3):560–570

    Article  CAS  PubMed  Google Scholar 

  20. Dash SN, Dash NR, Guru B, Mohapatra PC (2014) Towards reaching the target: clinical application of mesenchymal stem cells for diabetic foot ulcers. Rejuvenation Res 17(1):40–53

    Article  PubMed  Google Scholar 

  21. Zhang S, Chen L, Zhang G, Zhang B (2020) Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages. Stem Cell Res Ther 11(1):1–15

    Google Scholar 

  22. Raoofi A, Sadeghi Y, Piryaei A, Sajadi E, Aliaghaei A, Rashidiani-Rashidabadi A et al (2021) Bone marrow mesenchymal stem cell condition medium loaded on PCL nanofibrous scaffold promoted nerve regeneration after sciatic nerve transection in male rats. Neurotox Res 39(5):1470–1486

    Article  CAS  PubMed  Google Scholar 

  23. Kouhbananinejad SM, Derakhshani A, Vahidi R, Dabiri S, Fatemi A, Armin F et al (2019) A fibrinous and allogeneic fibroblast-enriched membrane as a biocompatible material can improve diabetic wound healing. Biomater Sci 7(5):1949–1961

    Article  CAS  PubMed  Google Scholar 

  24. Jalalie L, Rezaee MA, Rezaie MJ, Jalili A, Raoofi A, Rustamzade A (2021) Human umbilical cord mesenchymal stem cells improve morphometric and histopathologic changes of cyclophosphamide-injured ovarian follicles in mouse model of premature ovarian failure. Acta Histochem 123(1):151658

    Article  CAS  PubMed  Google Scholar 

  25. Seyed Sharifi SH, Nasiry D, Mahmoudi F, Etezadpour M, Ebrahimzadeh MA (2021) Evaluation of sambucus ebulus fruit extract in full-thickness diabetic wound healing in rats. Jf Mazandaran Univer Med Sci 31(200):11–25

    Google Scholar 

  26. Nasiry D, Khalatbary AR, Ebrahimzadeh MA (2017) Anti-inflammatory and wound-healing potential of golden chanterelle mushroom, Cantharellus cibarius (Agaricomycetes). Int J Med Mushrooms 19(10):893–903

    Article  PubMed  Google Scholar 

  27. Jackson WM, Nesti LJ, Tuan RS (2012) Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med 1(1):44–50

    Article  CAS  PubMed  Google Scholar 

  28. Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, Armugam A et al (2014) Human Wharton’s jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds. J Cell Biochem 115(2):290–302

    Article  CAS  PubMed  Google Scholar 

  29. Montanucci P, di Pasquali C, Ferri I, Pescara T, Pennoni I, Siccu P et al (2017) Human umbilical cord wharton jelly-derived adult mesenchymal stem cells, in biohybrid scaffolds, for experimental skin regeneration. Stem cells international 2017:1472642

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yavari K, Abolhassani S, Mohammadnejad J (2016) Human umbilical cord blood stem cells differentiate into keratinocytes under in vitro conditions and culturing dif-ferentiated cells on bacterial cellulose film. Int J Stem Cell Res Transplant 4(7):216–219

    Google Scholar 

  31. Shokrgozar MA, Fattahi M, Bonakdar S, Ragerdi Kashani I, Majidi M, Haghighipour N et al (2012) Healing potential of mesenchymal stem cells cultured on a collagen-based scaffold for skin regeneration. Iran Biomed J 16(2):68–76

    PubMed  PubMed Central  Google Scholar 

  32. Ghaneialvar H, Arjmand S, Sahebghadam Lotfi A, Soleimani M, Mashhadi AF (2017) Influence of adipose derived mesenchymal stem cells on the effective inflammatory factors of diabetic wound healing in animal models. J Mazandaran Univer Med Sci 27(148):12–21

    Google Scholar 

  33. Millán-Rivero JE, Martínez CM, Romecín PA, Aznar-Cervantes SD, Carpes-Ruiz M, Cenis JL et al (2019) Silk fibroin scaffolds seeded with Wharton’s jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem Cell Res Ther 10(1):126

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hocking AM, Gibran NS (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316(14):2213–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duff M, Demidova O, Blackburn S, Shubrook J (2015) Cutaneous manifestations of diabetes mellitus. Clin Diabet Public Am Diabet Assoc 33(1):40–48

    Google Scholar 

  36. Argyropoulos AJ, Robichaud P, Balimunkwe RM, Fisher GJ, Hammerberg C, Yan Y et al (2016) Alterations of Dermal connective tissue collagen in diabetes: molecular basis of aged-appearing skin. PLoS ONE 11(4):e0153806

    Article  PubMed  PubMed Central  Google Scholar 

  37. Regulski MJ (2017) Mesenchymal stem cells: “guardians of inflammation.” Wounds Compend Clin Res Pract 29(1):20–27

    Google Scholar 

  38. Godwin J, Kuraitis D, Rosenthal N (2014) Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int J Biochem Cell Biol 56:47–55

    Article  CAS  PubMed  Google Scholar 

  39. Jung JA, Yoon YD, Lee HW, Kang SR, Han SK (2018) Comparison of human umbilical cord blood-derived mesenchymal stem cells with healthy fibroblasts on wound-healing activity of diabetic fibroblasts. Int Wound J 15(1):133–139

    Article  PubMed  Google Scholar 

  40. Azari O, Babaei H, Molaei M, Nematollahi-Mahani S, Layasi S (2008) The use of Wharton’s jelly-derived mesenchymal stem cells to accelerate second-intention cutaneous wound healing in goat. Iranian J Veterin Surg 3(3):15–27

    Google Scholar 

  41. Zhang S, Chen L, Zhang G, Zhang B (2020) Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages. Stem Cell Res Ther 11(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pashoutan Sarvar D, Shamsasenjan K, Akbarzadehlaleh P, Movassaghpour A, Timari H, Aqmasheh S (2017) The application of Mesenchymal stem cell-derived vesicles in regenerative medicine. Scient J Iran Blood Transfus Organ 14(3):237–248

    Google Scholar 

  43. Jonidi Shariatzadeh F, Gheydari K, Solouk A, Bonakdar S (2018) Use of stem cells in cartilage tissue regeneration and engineering: a review. Pathobiol Res 21(1):41–63

    Google Scholar 

  44. Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS et al (2010) Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 3(110):ra13

    Article  PubMed  PubMed Central  Google Scholar 

  45. McAndrews KM, McGrail DJ, Ravikumar N, Dawson MR (2015) Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β. Sci Rep 5:16941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran, Forensic medicine specialist, Research center of legal medicine organization of Iran, Tehran, Iran, and National Animal Modeling Network and In vivo Research, Council for Development of Stem Cell Sciences and Technologies, Vice-Presidency for Science and Technology, grant number 98/11626.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sona Zare.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. Research involving human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilforoushzadeh, M.A., Raoofi, A., Afzali, H. et al. Promotion of cutaneous diabetic wound healing by subcutaneous administration of Wharton's jelly mesenchymal stem cells derived from umbilical cord. Arch Dermatol Res 315, 147–159 (2023). https://doi.org/10.1007/s00403-022-02326-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-022-02326-2

Keywords

Navigation