Skip to main content

Advertisement

Log in

Chemokine level predicts the therapeutic effect of anti-PD-1 antibody (nivolumab) therapy for malignant melanoma

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Anti-programmed cell death protein 1 (PD-1) antibody drugs, nivolumab and pembrolizumab, are regarded as first-line therapies for advanced malignant melanoma. Anti-PD-1 therapy suppresses tumor immunity, and the therapeutic effect is frequently correlated with the number of tumor-infiltrating lymphocytes (TIL) and tumor mutation burden (TMB). However, sampling tumor tissues from the metastatic sites to examine the number of TILs and TMB level is often challenging. Herein, we focused on chemokines in blood to determine whether they can predict the therapeutic effect of anti-PD-1 (nivolumab) therapy. First, we measured 44 types of chemokines and cytokines in the blood of 8 advanced malignant melanomas before anti-PD-1 (nivolumab) treatment and examined the relationship between the levels of these proteins and therapeutic effect of the drug treatment, which suggested that C–C motif chemokine 5 (CCL5) and C–X–C motif chemokine ligand 12 (CXCL12) were candidates for biomarkers to predict the therapeutic effect of anti-PD-1 therapy. Next, we measured the blood levels of CCL5 and CXCL12 in 22 patients with advanced malignant melanomas before the administration of anti-PD-1 antibody. We evaluated tumor infiltration of CD8-positive T cells by immunostaining in nine patients in whom the metastatic site could be sampled at the beginning of the treatment. The patients with lower than average levels of CCL5 and CXCL12 had a large number of TILs (P = 0.04) and good disease-specific survival rate (P = 0.04). Therefore, CCL5 and CXCL12 could likely be used as biomarkers to predict the therapeutic effect of anti-PD-1 (nivolumab) therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hamid O, Robert C, Daud A et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ansell SM, Lesokhin AM, Borrello I et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319

    Article  PubMed  Google Scholar 

  5. Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028

    Article  PubMed  Google Scholar 

  6. Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang X, Wang J, Deng X et al (2019) Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18:10

    Article  PubMed  PubMed Central  Google Scholar 

  8. Topalian SL, Sznol M, McDermott DF et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. Topalian SL J Clin Oncol 32:1020–1030

    Article  CAS  PubMed  Google Scholar 

  9. Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330

    Article  CAS  PubMed  Google Scholar 

  10. Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532

    Article  CAS  PubMed  Google Scholar 

  11. Wolchok JD, Kluger H, Callahanet MK et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Postow MA, Chesney J, Pavlick AC et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017

    Article  PubMed  PubMed Central  Google Scholar 

  13. De Velasco G, Je Y, Bossé D et al (2017) Comprehensive meta-analysis of key immune-related adverse events from CTLA-4 and PD-1/PD-L1 inhibitors in cancer patients. Cancer Immunol Res 5:312–318

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tajmir-Riahi A, Bergmann T, Schmid M et al (2018) Life-threatening autoimmune cardiomyopathy reproducibly induced in a patient by checkpoint inhibitor therapy. J Immunother 41:35–38

    Article  CAS  PubMed  Google Scholar 

  15. Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taube JM, Klein A, Brahmer JR et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. RutledgeWC KJ, Gao J et al (2013) Tumor infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin Cancer Res 19:4951–4960

    Article  Google Scholar 

  19. Rooney MS, Shukla SA, Wu CJ et al (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown SD, Warren RL, Gibb EA et al (2014) Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res 24:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74

    Article  CAS  PubMed  Google Scholar 

  22. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rizk EM, Seffens AM, Trager MH et al (2020) Biomarkers predictive of survival and response to immune checkpoint inhibitors in melanoma. Am J Clin Dermatol 21:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  26. Fujimura T, Sato Y, Tanita K et al (2019) Association of baseline serum levels of CXCL5 with the efficacy of nivolumab in advanced melanoma. Front Med 6:86

    Article  Google Scholar 

  27. Edge SB, Compton CC, Fritz AG, Greene FL, Trotti A (eds) (2010) AJCC cancer staging manual, 7th edn. Springer, New York

    Google Scholar 

  28. Schwartz LH, Litière S, de Vries E et al (2016) RECIST 1.1-Update and clarification: From the RECIST committee. Eur J Cancer 62:132–137

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fujimoto Y, Inoue N, Morimoto K et al (2020) Significant association between high serum CCL5 levels and better disease-free survival of patients with early breast cancer. Cancer Sci 111:209–218

    Article  CAS  PubMed  Google Scholar 

  30. Rusetska N, Kowalski K, Zalewski K et al (2021) CXCR4/ACKR3/CXCL12 axis in the lymphatic metastasis of vulvar squamous cell carcinoma. J Clin Pathol

  31. Schall TJ, Bacon K, Toy KJ et al (1990) Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347:669–671

    Article  CAS  PubMed  Google Scholar 

  32. Balkwill FR (2012) The chemokine system and cancer. J Pathol 226:148–157

    Article  CAS  PubMed  Google Scholar 

  33. Oppermann M (2004) Chemokine receptor CCR5: insights into structure, function, and regulation. Cell Signal 16:1201–1210

    Article  CAS  PubMed  Google Scholar 

  34. González-Martín A, Gómez L, Lustgarten J et al (2011) Maximal T cell-mediated antitumor responses rely upon CCR5 expression in both CD4(+) and CD8(+) T cells. Cancer Res 71:5455–5466

    Article  PubMed  Google Scholar 

  35. Lapteva N, Huang XF (2010) CCL5 as an adjuvant for cancer immunotherapy. Expert Opin Biol Ther 10:725–733

    Article  CAS  PubMed  Google Scholar 

  36. González-Martin A, Mira E, Mañes S (2012) CCR5 as a potential target in cancer therapy: inhibition or stimulation? Anticancer Agents Med Chem 12:1045–1057

    Article  PubMed  Google Scholar 

  37. Aldinucci D, Colombatti A (2014) The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm:292376

  38. Weitzenfeld P, Ben-Baruch A (2014) The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 352:36–53

    Article  CAS  PubMed  Google Scholar 

  39. Chang LY, Lin YC, Mahalingam J et al (2012) Tumor-derived chemokine CCL5 enhances TGF-beta-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res 72:1092–1102

    Article  CAS  PubMed  Google Scholar 

  40. Sugasawa H, Ichikura T, Kinoshita M, Ono S et al (2008) Gastric cancer cells exploit CD4+ cell-derived CCL5 for their growth and prevention of CD8+ cell-involved tumor elimination. Int J Cancer 122:2535–2541

    Article  CAS  PubMed  Google Scholar 

  41. Sharma M, Afrin F, Satija N et al (2011) Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells Dev 20:933–946

    Article  CAS  PubMed  Google Scholar 

  42. Zboralski D, Hoehlig K, Eulberg D et al (2017) Increasing tumor-infiltrating T Cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol Res 11:950–956

    Article  Google Scholar 

  43. Meng W, Xue S, Chen Y (2018) The role of CXCL12 in tumor microenvironment. Gene 641:105–110

    Article  CAS  PubMed  Google Scholar 

  44. Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16:2927–2931

    Article  CAS  PubMed  Google Scholar 

  45. Ochoa-Callejero L, Perez-Martinez L, Rubio-Mediavilla S et al (2013) Maraviroc, a CCR5 antagonist, prevents development of hepatocellular carcinoma in a mouse model. PLoS ONE 8:e53992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. D’Alterio C, Barbieri A, Portella L et al (2012) Inhibition of stromal CXCR4 impairs development of lung metastases. Cancer Immunol Immun 61:1713–1720

    Article  Google Scholar 

  47. Cashen AF (2009) Plerixafor hydrochloride: a novel agent for the mobilization of peripheral blood stem cells. Drug Today 45:497–505

    CAS  Google Scholar 

  48. Liang Z, Zhan W, Zhu A et al (2012) Development of a unique small molecule modulator of CXCR4. PLoS ONE 7:e34038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parameswaran R, Yu M, Lim M et al (2011) Combination of drug therapy in acute lymphoblastic leukemia with a CXCR4 antagonist. Leukemia 25:1314–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuhne MR, Mulvey T, Belanger B et al (2013) BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res 19:357–366

    Article  CAS  PubMed  Google Scholar 

  51. Tamamura H, Hori A, Kanzaki N et al (2003) T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 550:79–83

    Article  CAS  PubMed  Google Scholar 

  52. Ma LX, Qiao HQ, He CJ et al (2012) Modulating the interaction of CXCR4 and CXCL12 by low-molecular-weight heparin inhibits hepatic metastasis of colon cancer. Invest New Drug 30:508–517

    Article  CAS  Google Scholar 

  53. Osella-Abate S, Vignale C, Annaratone L et al (2021) Microenvironment in cutaneous melanomas: a gene expression profile study may explain the role of histological regression. J Eur Acad Dermatol Venereol 35:e35–e38

    Article  CAS  PubMed  Google Scholar 

  54. Gabellini C, Gómez-Abenza E, Ibáñez-Molero S et al (2018) Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. Int J Cancer 142:584–596

    Article  CAS  PubMed  Google Scholar 

  55. Dhawan P, Richmond A (2002) Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol 72:9–18

    Article  CAS  PubMed  Google Scholar 

  56. Fujisawa Y, Yoshino K, Otsuka A et al (2018) Baseline neutrophil to lymphocyte ratio combined with serum lactate dehydrogenase level associated with outcome of nivolumab immunotherapy in a Japanese advanced melanoma population. Br J Dermatol 179:213–215

    Article  CAS  PubMed  Google Scholar 

  57. Rosner S, Kwong E, Shoushtari AN et al (2018) Peripheral blood clinical laboratory variables associated with outcomes following combination nivolumab and ipilimumab immunotherapy in melanoma. Cancer Med 7:690–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuk D, Shoushtari AN, Barker CA et al (2016) Prognosis of mucosal, uveal, acral, nonacral cutaneous, and unknown primary melanoma from the time of first metastasis. Oncologist 21:848–854

    Article  PubMed  PubMed Central  Google Scholar 

  59. Capasso A, Lang J, Pitts TM et al (2018) Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts. J Immunother Cancer 7:37

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ms. Aya Uchiyama for the technical assistance.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

KN conceived, designed, and performed the experiments; analyzed the data; and wrote the manuscript. AA, YK, and RO conceived and designed the experiments and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kenta Nakamura.

Ethics declarations

Conflict of interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Ethics approval

The protocol for this human study was approved by the ethics committee of Shinshu University Graduate School of Medicine, Matsumoto, Japan (Permit No: 569).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, K., Ashida, A., Kiniwa, Y. et al. Chemokine level predicts the therapeutic effect of anti-PD-1 antibody (nivolumab) therapy for malignant melanoma. Arch Dermatol Res 314, 887–895 (2022). https://doi.org/10.1007/s00403-021-02305-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-021-02305-z

Keywords

Navigation