Skip to main content

Advertisement

Log in

Correction of ankle varus deformity using patient-specific dome-shaped osteotomy guides designed on weight-bearing CT: a pilot study

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

Dome-shaped supramalleolar osteotomies are a well-established treatment option for correcting ankle deformity. However, the procedure remains technically demanding and is limited by a two-dimensional (2D) radiographic planning of a three-dimensional (3D) deformity. Therefore, we implemented a weight-bearing CT (WBCT) to plan a 3D deformity correction using patient-specific guides.

Methods

A 3D-guided dome-shaped supramalleolar osteotomy was performed to correct ankle varus deformity in a case series of five patients with a mean age of 53.8 years (range 47–58). WBCT images were obtained to generate 3D models, which enabled a deformity correction using patient-specific guides. These technical steps are outlined and associated with a retrospective analysis of the clinical outcome using the EFAS score, Foot and Ankle Outcome Score (FAOS) and visual analog pain scale (VAS). Radiographic assessment was performed using the tibial anterior surface angle (TAS), tibiotalar angle (TTS), talar tilt angle (TTA), hindfoot angle (HA), tibial lateral surface angle (TLS) and tibial rotation angle (TRA).

Results

The mean follow-up was 40.8 months (range 8–65) and all patients showed improvements in the EFAS score, FAOS and VAS (p < 0.05). A 3-month postoperative WBCT confirmed healing of the osteotomy site and radiographic improvement of the TAS, TTS and HA (p < 0.05), but the TTA and TRA did not change significantly (p > 0.05).

Conclusion

Dome-shaped supramalleolar osteotomies using 3D-printed guides designed on WBCT are a valuable option in correcting ankle varus deformity and have the potential to mitigate the technical drawbacks of free-hand osteotomies.

Level of evidence

Level 5 case series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barg A, Pagenstert GI, Hügle T, Gloyer M, Wiewiorski M, Henninger HB et al (2013) Ankle osteoarthritis: etiology, diagnostics, and classification. Foot Ankle Clin 18:411–426. https://doi.org/10.1016/j.fcl.2013.06.001

    Article  PubMed  Google Scholar 

  2. Glazebrook M, Daniels T, Younger A, Foote CJ, Penner M, Wing K et al (2008) Comparison of health-related quality of life between patients with end-stage ankle and hip arthrosis. J Bone Jt Surg Ser A. https://doi.org/10.2106/JBJS.F.01299

    Article  Google Scholar 

  3. Daniels T, Thomas R (2008) Etiology and biomechanics of ankle arthritis. Foot Ankle Clin. https://doi.org/10.1016/j.fcl.2008.05.002

    Article  PubMed  Google Scholar 

  4. Saltzman CL, Salamon ML, Blanchard GM, Huff T, Hayes A, Buckwalter JA et al (2005) Epidemiology of ankle arthritis: report of a consecutive series of 639 patients from a tertiary orthopaedic center. Iowa Orthop J 25:44–46

    PubMed  PubMed Central  Google Scholar 

  5. Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B (2009) Etiology of ankle osteoarthritis. Clin Orthop Relat Res. https://doi.org/10.1007/s11999-008-0543-6

    Article  PubMed  Google Scholar 

  6. Barg A, Pagenstert GI, Leumann AG, Müller AM, Henninger HB, Valderrabano V (2012) Treatment of the arthritic valgus ankle. Foot Ankle Clin. https://doi.org/10.1016/j.fcl.2012.08.007

    Article  PubMed  Google Scholar 

  7. Krähenbühl N, Zwicky L, Bolliger L, Schädelin S, Hintermann B, Knupp M (2017) Mid- to long-term results of supramalleolar osteotomy. Foot Ankle Int 38:124–132. https://doi.org/10.1177/1071100716673416

    Article  PubMed  Google Scholar 

  8. Krähenbühl N, Akkaya M, Deforth M, Zwicky L, Barg A, Hintermann B (2019) Extraarticular supramalleolar osteotomy in asymmetric varus ankle osteoarthritis. Foot Ankle Int 40:936–947. https://doi.org/10.1177/1071100719845928

    Article  PubMed  Google Scholar 

  9. Barg A, Pagenstert GI, Horisberger M, Paul J, Gloyer M, Henninger HB et al (2013) Supramalleolar osteotomies for degenerative joint disease of the ankle joint: Indication, technique and results. Int Orthop 37:1683–1695. https://doi.org/10.1007/s00264-013-2030-2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pagenstert GI, Hintermann B, Barg A, Leumann A, Valderrabano V (2007) Realignment surgery as alternative treatment of varus and valgus ankle osteoarthritis. Clin Orthop Relat Res. https://doi.org/10.1097/BLO.0b013e318124a462

    Article  PubMed  Google Scholar 

  11. Knupp M (2017) The use of osteotomies in the treatment of asymmetric ankle joint arthritis. Foot Ankle Int 38:220–229. https://doi.org/10.1177/1071100716679190

    Article  PubMed  Google Scholar 

  12. Bernasconi A, Cooper L, Lyle S, Patel S, Cullen N, Singh D et al (2020) Intraobserver and interobserver reliability of cone beam weightbearing semi-automatic three-dimensional measurements in symptomatic pes cavovarus. Foot Ankle Surg 26:564–572. https://doi.org/10.1016/j.fas.2019.07.005

    Article  PubMed  Google Scholar 

  13. Peiffer M, Belvedere C, Clockaerts S, Leenders T, Leardini A, Audenaert E et al (2020) Three-dimensional displacement after a medializing calcaneal osteotomy in relation to the osteotomy angle and hindfoot alignment. Foot Ankle Surg 26:78–84. https://doi.org/10.1016/j.fas.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  14. Dagneaux L, Dufrenot M, Bernasconi A, Bedard NA, de Cesar NC, Lintz F (2020) Three-dimensional biometrics to correlate hindfoot and knee coronal alignments using modern weightbearing imaging. Foot Ankle Int. https://doi.org/10.1177/1071100720938333

    Article  PubMed  Google Scholar 

  15. de Cesar NC, Bang K, Mansur NS, Garfinkel JH, Bernasconi A, Lintz F et al (2020) Multiplanar semiautomatic assessment of foot and ankle offset in adult acquired flatfoot deformity. Foot Ankle Int 41:839–848. https://doi.org/10.1177/1071100720920274

    Article  Google Scholar 

  16. Lintz F, Welck M, Bernasconi A, Thornton J, Cullen NP, Singh D et al (2017) 3D biometrics for hindfoot alignment using weightbearing CT. Foot Ankle Int 38:684–689. https://doi.org/10.1177/1071100717690806

    Article  PubMed  Google Scholar 

  17. Kvarda P, Heisler L, Krähenbühl N, Steiner CS, Ruiz R, Susdorf R et al (2020) 3D assessment in posttraumatic ankle osteoarthritis. Foot Ankle Int. https://doi.org/10.1177/1071100720961315

    Article  PubMed  Google Scholar 

  18. Netto CDC, Schon LC, Thawait GK, Da Fonseca LF, Chinanuvathana A, Zbijewski WB et al (2017) Flexible adult acquired flatfoot deformity: comparison between weight-bearing and non-weight-bearing measurements using cone-beam computed tomography. J Bone Jt Surg Am 99:e98. https://doi.org/10.2106/JBJS.16.01366

    Article  Google Scholar 

  19. Lintz F, de Netto CC, Barg A, Burssens A, Richter M, Group WBCIS (2018) Weight-bearing cone beam CT scans in the foot and ankle. EFORT Open Rev 3:278. https://doi.org/10.1302/2058-5241.3.170066

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang JZ, Lintz F, Bernasconi A, Zhang S (2019) 3D biometrics for hindfoot alignment using weightbearing computed tomography. Foot Ankle Int 40:720–726. https://doi.org/10.1177/1071100719835492

    Article  PubMed  Google Scholar 

  21. Kvarda P, Krähenbühl N, Susdorf R, Burssens A, Ruiz R, Barg A et al (2021) High reliability for semiautomated 3D measurements based on weightbearing CT scans. Foot Ankle Int. https://doi.org/10.1177/10711007211034522

    Article  PubMed  Google Scholar 

  22. Ludlow B, Ivanovic M (2014) Weightbearing CBCT, MDCT, and 2D imaging dosimetry of the foot and ankle. Int J Diagn Imaging 1(2):1–9

    Article  Google Scholar 

  23. Knupp M, Stufkens SAS, Bolliger L, Barg A, Hintermann B (2011) Classification and treatment of supramalleolar deformities. Foot Ankle Int. https://doi.org/10.3113/FAI.2011.1023

    Article  PubMed  Google Scholar 

  24. Cox J, Hewes T (1979) “Normal” talar tilt angle. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-197905000-00008

    Article  PubMed  Google Scholar 

  25. Hayashi K, Tanaka Y, Kumai T, Sugimoto K, Takakura Y (2008) Correlation of compensatory alignment of the subtalar joint to the progression of primary osteoarthritis of the ankle. Foot Ankle Int 29:400–406. https://doi.org/10.3113/FAI.2008.0400

    Article  PubMed  Google Scholar 

  26. Richter M, Agren PH, Besse JL, Cöster M, Kofoed H, Maffulli N et al (2018) EFAS score—multilingual development and validation of a patient-reported outcome measure (PROM) by the score committee of the European Foot and Ankle Society (EFAS). Foot Ankle Surg. https://doi.org/10.1016/j.fas.2018.05.004

    Article  PubMed  Google Scholar 

  27. Roos EM, Brandsson S, Karlsson J (2001) Validation of the foot and ankle outcome score for ankle ligament reconstruction. Foot Ankle Int. https://doi.org/10.1177/107110070102201004

    Article  PubMed  Google Scholar 

  28. Burssens A, Peeters J, Peiffer M, Marien R, Lenaerts T, Vandeputte G et al (2018) Reliability and correlation analysis of computed methods to convert conventional 2D radiological hindfoot measurements to a 3D setting using weightbearing CT. Int J Comput Assist Radiol Surg 13:1999–2008. https://doi.org/10.1007/s11548-018-1727-5

    Article  CAS  PubMed  Google Scholar 

  29. Carrara C, Belvedere C, Caravaggi P, Durante S, Leardini A (2020) Techniques for 3D foot bone orientation angles in weight-bearing from cone-beam computed tomography. Foot Ankle Surg. https://doi.org/10.1016/j.fas.2020.03.013

    Article  PubMed  Google Scholar 

  30. Najefi AA, Ghani Y, Goldberg A (2019) Role of rotation in total ankle replacement. Foot Ankle Int 40:1358–1367. https://doi.org/10.1177/1071100719867068

    Article  PubMed  Google Scholar 

  31. Harrington KD (1979) Degenerative arthritis of the ankle secondary to long-standing lateral ligament instability. J Bone Jt Surg Ser A 61:354–361. https://doi.org/10.2106/00004623-197961030-00006

    Article  CAS  Google Scholar 

  32. Schweizer A, Fürnstahl P, Nagy L (2013) Three-dimensional correction of distal radius intra-articular malunions using patient-specific drill guides. J Hand Surg Am 38:2339–2347. https://doi.org/10.1016/j.jhsa.2013.09.023

    Article  PubMed  Google Scholar 

  33. Victor J, Premanathan A (2013) Virtual 3D planning and patient specific surgical guides for osteotomies around the knee: a feasibility and proof-of-concept study. Bone Joint J 95-B:153–158. https://doi.org/10.1302/0301-620X.95B11.32950

    Article  CAS  PubMed  Google Scholar 

  34. Weigelt L, Fürnstahl P, Hirsiger S, Vlachopoulos L, Espinosa N, Wirth SH (2017) Three-dimensional correction of complex ankle deformities with computer-assisted planning and patient-specific surgical guides. J Foot Ankle Surg 56:1158–1164. https://doi.org/10.1053/j.jfas.2017.05.025

    Article  PubMed  Google Scholar 

  35. Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. https://doi.org/10.1186/s12938-016-0236-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berlet GC, Penner MJ, Lancianese S, Stemniski PM, Obert RM (2014) Total ankle arthroplasty accuracy and reproducibility using preoperative CT scan-derived. Patient-specific guides. Foot Ankle Int 35:665–676. https://doi.org/10.1177/1071100714531232

    Article  PubMed  Google Scholar 

  37. Dagneaux L, Canovas F (2020) 3D printed patient-specific cutting guide for anterior midfoot tarsectomy. Foot Ankle Int 41:211–215. https://doi.org/10.1177/1071100719882723

    Article  PubMed  Google Scholar 

  38. Shereff MJ, DiGiovanni L, Bejjani FJ, Hersh A, Kummer F (1990) A comparison of nonweight-bearing and weight-bearing radiographs of the foot. Foot Ankle 10:306–311. https://doi.org/10.1177/107110079001000604

    Article  CAS  PubMed  Google Scholar 

  39. Sripanich J, Weinberg M, Krähenbühl J, Rungprai C, Saltzman C, Barg A (2021) Reliability of measurements assessing the Lisfranc joint using weightbearing computed tomography imaging. Arch Orthop Trauma Surg 141:775–781. https://doi.org/10.1007/S00402-020-03477-5

    Article  PubMed  Google Scholar 

  40. Richter M, Seidl B, Zech S, Hahn S (2014) PedCAT for 3D-imaging in standing position allows for more accurate bone position (angle) measurement than radiographs or CT. Foot Ankle Surg 20:201–207. https://doi.org/10.1016/j.fas.2014.04.004

    Article  PubMed  Google Scholar 

  41. Barg A, Bailey T, Richter M, de Cesar NC, Lintz F, Burssens A et al (2018) Weightbearing computed tomography of the foot and ankle: emerging technology topical review. Foot Ankle Int 39:376–386. https://doi.org/10.1177/1071100717740330

    Article  PubMed  Google Scholar 

  42. Brandenburg LS, Siegel M, Neubauer J, Merz J, Bode G, Kühle J (2021) Measuring standing hindfoot alignment: reliability of different approaches in conventional x-ray and cone-beam CT. Arch Orthop Trauma Surg. https://doi.org/10.1007/S00402-021-03904-1

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lalevée M, Barbachan Mansur NS, Rojas E, Lee HY, Ahrenholz S, Dibbern LF, de Cesar NC (2021) Prevalence and pattern of lateral impingements in the progressive collapsing foot deformity. Arch Orthop Trauma Surg. https://doi.org/10.1007/S00402-021-04015-7

    Article  PubMed Central  PubMed  Google Scholar 

  44. Burssens A, Barg A, van Ovost E, Van Oevelen A, Leenders T, Peiffer M et al (2019) The hind- and midfoot alignment computed after a medializing calcaneal osteotomy using a 3D weightbearing CT. Int J Comput Assist Radiol Surg 14:1439–1447. https://doi.org/10.1007/s11548-019-01949-7

    Article  PubMed  Google Scholar 

  45. de Cesar NN, Schmidt E, Lalevée M, Mansur BNS (2021) Flexor tenodesis procedure in the treatment of lesser toe deformities. Arch Orthop Trauma Surg. https://doi.org/10.1007/S00402-021-03942-9

    Article  Google Scholar 

  46. Yan CH, Chiu KY, Ng FY, Chan PK, Fang CX (2015) Comparison between patient-specific instruments and conventional instruments and computer navigation in total knee arthroplasty: a randomized controlled trial. Knee Surg Sport Traumatol Arthrosc 23:3637–3645. https://doi.org/10.1007/s00167-014-3264-2

    Article  Google Scholar 

  47. Jones GG, Jaere M, Clarke S, Cobb J (2018) 3D printing and high tibial osteotomy. EFORT Open Rev 3:254–259. https://doi.org/10.1302/2058-5241.3.170075

    Article  PubMed  PubMed Central  Google Scholar 

  48. Burssens A, Vermue H, Weinberg MW, Van Oevelen A, Lauwagie S, Forward M et al (2020) Three-dimensional correction of fibular hemimelia using computer-assisted planning: technical report and literature review. Acta Orthop Belg 86(3):383–390

    PubMed  Google Scholar 

  49. Glazebrook M (2018) A new total ankle arthroplasty implant with promising level-IV results: commentary on an article by Alexej Barg, MD, et al.: “Early clinical and radiographic outcomes of trabecular metal total ankle replacement using a transfibular approach.” J Bone Joint Surg Am 2018(100):e39. https://doi.org/10.2106/JBJS.17.01317

    Article  Google Scholar 

  50. Wagner P, Colin F, Hintermann B (2014) Distal tibia dome osteotomy. Tech Foot Ankle Surg 13:103–107. https://doi.org/10.1097/BTF.0000000000000037

    Article  Google Scholar 

  51. Audenaert EA, Van Houcke J, Almeida DF, Paelinck L, Peiffer M, Steenackers G et al (2019) Cascaded statistical shape model based segmentation of the full lower limb in CT. Comput Methods Biomech Biomed Eng 22:644–657. https://doi.org/10.1080/10255842.2019.1577828

    Article  Google Scholar 

  52. Cabarcas BC, Cvetanovich GL, Espinoza Orías AA, Inoue N, Gowd AK, Bernardoni E et al (2019) Novel 3-dimensionally printed patient-specific guide improves accuracy compared with standard total shoulder arthroplasty guide: a cadaveric study. JSES Open Access 3:83–92. https://doi.org/10.1016/j.jses.2019.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  53. Burssens ABM, Buedts K, Barg A, Vluggen E, Demey P, Saltzman CL et al (2020) Is lower-limb alignment associated with hindfoot deformity in the coronal plane? A Weightbearing CT Analysis. Clin Orthop Relat Res 478:154–168. https://doi.org/10.1097/CORR.0000000000001067

    Article  PubMed  Google Scholar 

  54. Burssens A, De Roos D, Barg A, Welck M, Krähenbühl N, Saltzman C, Victor J (2021) Alignment of the hindfoot in total knee arthroplasty: a systematic review of clinical and radiological outcomes. Bone Joint J 103-B:87–97. https://doi.org/10.1302/0301-620X.103B1.BJJ-2020-0143.R1

    Article  PubMed  Google Scholar 

  55. Thelen P, Delin C, Folinais D, Radier C (2012) Evaluation of a new low-dose biplanar system to assess lower-limb alignment in 3D: a phantom study. Skeletal Radiol 41:1287–1293. https://doi.org/10.1007/s00256-012-1438-x

    Article  PubMed  Google Scholar 

  56. Segal NA, Nevitt MC, Lynch JA, Niu J, Torner JC, Guermazi A (2015) Diagnostic performance of 3D standing CT imaging for detection of knee osteoarthritis features. Phys Sportsmed 43:213–220. https://doi.org/10.1080/00913847.2015.1074854

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for the realization of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SF wrote the article and collected data. AB wrote the article and composed the figures. AVO assisted in writing and the computed analysis. LM and PM internally reviewed the article. KB performed the surgery, developed the study design, internally reviewed the article and assisted with data collection and writing.

Corresponding author

Correspondence to Sebastian Faict.

Ethics declarations

Conflict of interest

Arne Burssens, MD, reports paid conference costs by Cuvebeam LLC outside the submitted work. Kris Buedts, MD, reports paid consultancies by Stryker and Arthrex outside the submitted work. Sebastian Faict, MD; Aline van Oevelen, MD; Liselore Maeckelbergh, MD; Peter Mertens, MD, declare no conflict of interest.

Ethics

Approval of the local ethical review committee was acquired at the AZ Monica Hospital Antwerp in accordance with the Declaration of Helsinki (Study Number: OG106/01102015).

Informed consent

All five patients signed the informed consent in their native language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is not under consideration by any other journal and has not been previously published. The manuscript underwent several revisions with substantial contributions provided by each of the co-authors. The integrity of the work has been guaranteed by each of the co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faict, S., Burssens, A., Van Oevelen, A. et al. Correction of ankle varus deformity using patient-specific dome-shaped osteotomy guides designed on weight-bearing CT: a pilot study. Arch Orthop Trauma Surg 143, 791–799 (2023). https://doi.org/10.1007/s00402-021-04164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04164-9

Keywords

Navigation