Skip to main content
Log in

The knee position at tourniquet inflation does not affect the gap balancing during total knee arthroplasty

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The relationship between gap balancing and clinical outcome of total knee arthroplasty (TKA) has been researched. Tourniquet is widely used by most surgeons; however, there are little quantitative data about the gap depending on the tourniquet usage. We aimed to investigate whether the knee position at tourniquet inflation affected the gap measurement intra-operatively.

Methods

TKA was performed for 104 knees and the tourniquet was inflated with the knee at full flexion and extension. The gap was measured in each static knee flexion status (0°, 30°, 45°, 60°, 90°, 120°, and in full flexion) using a tensor. We measured the gap twice; under the tourniquet inflation and release. The gap difference at each static knee flexion status was calculated by subtracting the gap under release from that under inflation.

Results

When the tourniquet was inflated with the knee at full flexion, the mean gap differences were < 1 mm and < 1° in each static knee flexion status. When the tourniquet was inflated with the knee at full extension, the mean gap differences were < 1 mm and < 1°, respectively. All values of the gap difference were minimum, and were not affected by the tourniquet, whether the knee position at the tourniquet inflation was flexed or extended.

Conclusions

We postulated that the knee position at tourniquet inflation would affect the gap, which was refuted by our results. This shows that we can measure the gap without considering the knee position at tourniquet inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thiele K, Perka C, Matziolis G, Mayr HO, Sostheim M, Hube R (2015) Current failure mechanisms after knee arthroplasty have changed: polyethylene wear is less common in revision surgery. J Bone Jt Surg Am 97(9):715–720. https://doi.org/10.2106/JBJS.M.01534

    Article  Google Scholar 

  2. Okamoto S, Okazaki K, Mitsuyasu H, Matsuda S, Mizu-Uchi H, Mamai S, Tashiro Y, Iwamoto Y (2014) Extension gap needs more than 1-mm laxity after implantation to avoid post-operative flexion contracture in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(12):3174–3180. https://doi.org/10.1007/s00167-014-2858-z

    Article  PubMed  Google Scholar 

  3. Watanabe T, Muneta T, Sekiya I, Banks SA (2013) Intraoperative joint gaps affect postoperative range of motion in TKAs with posterior-stabilized prostheses. Clin Orthop Relat Res 471(4):1326–1333. https://doi.org/10.1007/s11999-012-2755-z

    Article  PubMed  Google Scholar 

  4. Minoda Y, Nakagawa S, Sugama R, Ikawa T, Noguchi T, Hirakawa M (2018) Joint gap in mid-flexion is not a predictor of postoperative flexion angle after total knee arthroplasty. J Arthroplasty 33(3):735–739. https://doi.org/10.1016/j.arth.2017.10.030

    Article  PubMed  Google Scholar 

  5. Minoda Y, Nakagawa S, Sugama R, Ikawa T, Noguchi T, Hirakawa M (2015) Midflexion laxity after implantation was influenced by the joint gap balance before implantation in TKA. J Arthroplasty 30(5):762–765. https://doi.org/10.1016/j.arth.2014.11.011

    Article  PubMed  Google Scholar 

  6. Wilson CJ, Theodoulou A, Damarell RA, Krishnan J (2017) Knee instability as the primary cause of failure following total knee arthroplasty (TKA): a systematic review on the patient, surgical and implant characteristics of revised TKA patients. Knee 24(6):1271–1281. https://doi.org/10.1016/j.knee.2017.08.060

    Article  PubMed  Google Scholar 

  7. Le DH, Goodman SB, Maloney WJ, Huddleston JI (2014) Current modes of failure in TKA: infection, instability, and stiffness predominate. Clin Orthop Relat Res 472(7):2197–2200. https://doi.org/10.1007/s11999-014-3540-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Petrie JR, Haidukewych GJ (2016) Instability in total knee arthroplasty: assessment and solutions. Bone Jt J 98-B:116–119. https://doi.org/10.1302/0301-620X.98B1.36371 (1 Suppl A)

    Article  CAS  Google Scholar 

  9. Matsumoto T, Muratsu H, Tsumura N, Mizuno K, Kuroda R, Yoshiya S, Kurosaka M (2006) Joint gap kinematics in posterior-stabilized total knee arthroplasty measured by a new tensor with the navigation system. J Biomech Eng 128(6):867–871. https://doi.org/10.1115/1.2354201

    Article  PubMed  Google Scholar 

  10. Matsumoto T, Kuroda R, Kubo S, Muratsu H, Mizuno K, Kurosaka M (2009) The intra-operative joint gap in cruciate-retaining compared with posterior-stabilised total knee replacement. J Bone Jt Surg Br 91(4):475–480. https://doi.org/10.1302/0301-620X.91B4.21862

    Article  CAS  Google Scholar 

  11. Matsumoto T, Kubo S, Muratsu H, Matsushita T, Ishida K, Kawakami Y, Oka S, Matsuzaki T, Kuroda Y, Nishida K, Akisue T, Kuroda R, Kurosaka M (2013) Different pattern in gap balancing between the cruciate-retaining and posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(10):2338–2345. https://doi.org/10.1007/s00167-013-2376-4

    Article  PubMed  Google Scholar 

  12. Yi S, Tan J, Chen C, Chen H, Huang W (2014) The use of pneumatic tourniquet in total knee arthroplasty: a meta-analysis. Arch Orthop Trauma Surg 134:1469–1476. https://doi.org/10.1007/s00402-014-2056-y

    Article  PubMed  Google Scholar 

  13. Tai TW, Chang CW, Lai KA, Lin CJ, Yang CY (2012) Effects of tourniquet use on blood loss and soft-tissue damage in total knee arthroplasty: a randomized controlled trial. J Bone Jt Surg Am 94(24):2209–2215. https://doi.org/10.2106/JBJS.K.00813

    Article  Google Scholar 

  14. Migliorini F, Maffulli N, Aretini P, Trivellas A, Tingart M, Eschweiler J, Baroncini A (2021) Impact of tourniquet during knee arthroplasty: a bayesian network meta-analysis of peri-operative outcomes. Arch Orthop Trauma Surg 141(6):1007–1023. https://doi.org/10.1007/s00402-020-03725-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zan PF, Yang Y, Fu D, Yu X, Li GD (2015) Releasing of tourniquet before wound closure or not in total knee arthroplasty: a meta-analysis of randomized controlled trials. J Arthroplasty 30(1):31–37. https://doi.org/10.1016/j.arth.2014.07.034

    Article  PubMed  Google Scholar 

  16. Mori N, Kimura S, Onodera T, Iwasaki N, Nakagawa I, Masuda T (2016) Use of a pneumatic tourniquet in total knee arthroplasty increases the risk of distal deep vein thrombosis: a prospective, randomized study. Knee 23:887–889. https://doi.org/10.1016/j.knee.2016.02.007

    Article  PubMed  Google Scholar 

  17. Ejaz A, Laursen AC, Kappel A, Laursen MB, Jakobsen T, Rasmussen S, Nielsen PT (2014) Faster recovery without the use of a tourniquet in total knee arthroplasty. Acta Orthop 85:422–426. https://doi.org/10.3109/17453674.2014.931197

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu D, Graham D, Gillies K, Gillies RM (2014) Effects of tourniquet use on quadriceps function and pain in total knee arthroplasty. Knee Surg Relat Res 26:207–213. https://doi.org/10.5792/ksrr.2014.26.4.207

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dennis DA, Kittelson AJ, Yang CC, Miner TM, Kim RH, Stevens-Lapsley JE (2016) Does tourniquet use in TKA affect recovery of lower extremity strength and function? A randomized trial. Clin Orthop Relat Res 474:69–77. https://doi.org/10.1007/s11999-015-4393-8

    Article  PubMed  Google Scholar 

  20. Liu Y, Si H, Zeng Y, Li M, Xie H, Shen B (2020) More pain and slower functional recovery when a tourniquet is used during total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 28:1842–1860. https://doi.org/10.1007/s00167-019-05617-w

    Article  PubMed  Google Scholar 

  21. Matsui Y, Nakagawa S, Minoda Y, Mizokawa S, Tokuhara Y, Kadoya Y (2014) Joint gap measurement in total knee arthroplasty using a tensor device with the same articulating surface as the prosthesis. Arch Orthop Trauma Surg 134(5):699–705. https://doi.org/10.1007/s00402-014-1945-4

    Article  PubMed  Google Scholar 

  22. Milanese S, Gordon S, Buettner P, Flavell C, Ruston S, Coe D, O’Sullivan W, McCormack S (2014) Reliability and concurrent validity of knee angle measurement: smart phone app versus universal goniometer used by experienced and novice clinicians. Man Ther 19(6):569–574. https://doi.org/10.1016/j.math.2014.05.009

    Article  PubMed  Google Scholar 

  23. Shamsi M, Mirzaei M, Khabiri SS (2019) Universal goniometer and electro-goniometer intra-examiner reliability in measuring the knee range of motion during active knee extension test in patients with chronic low back pain with short hamstring muscle. BMC Sports Sci Med Rehabil 11:4. https://doi.org/10.1186/s13102-019-0116-x (eCollection 2019)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mullaji A, Sharma A, Marawar S, Kanna R (2009) Quantification of effect of sequential posteromedial release on flexion and extension gaps: a computer-assisted study in cadaveric knees. J Arthroplasty 24(5):795–805. https://doi.org/10.1016/j.arth.2008.03.018

    Article  PubMed  Google Scholar 

  25. Mitsuyasu H, Matsuda S, Fukagawa S, Okazaki K, Tashiro Y, Kawahara S, Nakahara H, Iwamoto Y (2011) Enlarged post-operative posterior condyle tightens extension gap in total knee arthroplasty. J Bone Joint Surg Br 93(9):1210–1216. https://doi.org/10.1302/0301-620X.93B9.25822

    Article  CAS  PubMed  Google Scholar 

  26. Gejo R, Morita Y, Matsusita I, Sugimori K, Kimura T (2008) Joint gap changes with patellar tendon strain and patellar position during TKA. Clin Orthop Relat Res 466(4):946–951. https://doi.org/10.1007/s11999-008-0154-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shetty T, Nguyen JT, Sasaki M, Wu A, Bogner E, Burge A, Cogsil T, Dalal A, Halvorsen K, Cummings K, Su EP, Lyman S (2018) Risk factors for acute nerve injury after total knee arthroplasty. Muscle Nerve 57(6):946–950. https://doi.org/10.1002/mus.26045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olivecrona C, Blomfeldt R, Ponzer S, Stanford BR, Nilsson BY (2013) Tourniquet cuff pressure and nerve injury in knee arthroplasty in a bloodless field: a neurophysiological study. Acta Orthop 84(2):159–164. https://doi.org/10.3109/17453674.2013.782525

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kubosaka M, Ishida K, Sasaki H, Shibanuma N, Kuroda R, Matsumoto T (2017) Effect of suture and tourniquet on intraoperative kinematics in navigated total knee arthroplasty. J Arthroplasty 32(6):1824–1828. https://doi.org/10.1016/j.arth.2017.01.033

    Article  Google Scholar 

  30. Kim Y, Lee JK, Chung KS, Lee DY, Choi CH (2017) Measurement of change on medial and lateral joint gaps by navigation system in multiradius PS TKA. J Orthop Sci 22(4):693–697. https://doi.org/10.1016/j.jos.2017.02.010

    Article  PubMed  Google Scholar 

  31. Nakano N, Matsumoto T, Muratsu H, Takayama K, Kuroda R, Kurosaka M (2016) Postoperative knee flexion angle is affected by lateral laxity in cruciate-retaining total knee arthroplasty. J Arthroplasty 31(2):401–405. https://doi.org/10.1016/j.arth.2015.09.028

    Article  PubMed  Google Scholar 

  32. Yoon JR, Yang JH (2018) Satisfactory short-term results of navigation-assisted gap-balancing total knee arthroplasty using ultracongruent insert. J Arthroplasty 33(3):723–728. https://doi.org/10.1016/j.arth.2017.09.049

    Article  PubMed  Google Scholar 

  33. Jang SW, Koh IJ, Kim MS, Kim JY, In Y (2016) Semimembranosus release for medial soft tissue balancing does not weaken knee flexion strength in patients undergoing varus total knee arthroplasty. J Arthroplasty 31(11):2481–2486. https://doi.org/10.1016/j.arth.2016.04.022

    Article  PubMed  Google Scholar 

  34. Jawhar A, Hutter K, Scharf HP (2016) Outcome in total knee arthroplasty with a medial-lateral balanced versus unbalanced gap. J Orthop Surg (Hong Kong) 24(3):298–301. https://doi.org/10.1177/1602400305

    Article  Google Scholar 

  35. Matsuzaki T, Matsumoto T, Kubo S, Muratsu H, Matsushita T, Kawakami Y, Ishida K, Oka S, Kuroda R, Kurosaka M (2014) Tibial internal rotation is affected by lateral laxity in cruciate-retaining total knee arthroplasty: an intraoperative kinematic study using a navigation system and offset-type tensor. Knee Surg Sports Traumatol Arthrosc 22(3):615–620. https://doi.org/10.1007/s00167-013-2627-4

    Article  PubMed  Google Scholar 

Download references

Funding

No funds, grants, or other support was not received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by YM, MM, and NH. The first draft of the manuscript was written by YM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yoshio Matsui.

Ethics declarations

Conflict of interest

All authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

The study design was approved by the institutional review board and was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsui, Y., Matsuura, M. & Hidaka, N. The knee position at tourniquet inflation does not affect the gap balancing during total knee arthroplasty. Arch Orthop Trauma Surg 142, 1653–1659 (2022). https://doi.org/10.1007/s00402-021-04017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04017-5

Keywords

Navigation