Skip to main content

Advertisement

Log in

Two-dimensional fluoroscopic navigation in posterior cruciate ligament reconstruction: a preclinical cadaver study

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Objectives

To assess the feasibility and accuracy of frameless stereotactic two-dimensional fluoroscopy-assisted guide pin (GP) placement in posterior cruciate ligament (PCL) reconstruction in human cadavers.

Materials and methods

A total of 13 pins were placed in 7 cadaver specimens, using a fluoroscopic-based navigation technique. The knees were fixed noninvasively on a carbon baseplate. Interventions were planned on intraoperatively acquired perpendicular fluoroscopic images. A stereotactic aiming device was mounted to the carbon baseplate and adjusted according to the planned trajectories. GPs were advanced through the aiming device to the precalculated depth. GP positions were verified by image fusion of the fluoroscopic planning and control data, respectively. Measurements were scored on three occasions by one independent observer. In order to assess interobserver reliability, measurements were scored by two further independent observers on one occasion.

Results

The femoral cohort included seven GP placements in seven cadavers. Mean GP placement accuracy according to plan was 1.3 mm (SD 0.9 mm, range 0.3–3.8 mm) at the target point. The recorded femoral angular misalignment of GPs was 1.1° (SD 0.9°, range 0.2°–3.3°). The tibial cohort included six GP placements in six cadavers. Mean GP placement accuracy according to the plan was 1.8 mm (SD 2.1 mm, range 0.3–9.5 mm). The recorded tibial angular misalignment of GPs was 1.4° (SD 1.1°, range 0.1°–5°). Navigated GP implantation, as planned, was optimal in six out of seven cases in the femoral cohort and in four out of six cases in the tibial cohort.

Conclusion

Our preliminary cadaver study suggests that the use of fluoroscopic-based navigation combined with a stereotactic targeting device may be a helpful tool to improve PCL reconstruction. In addition, this method may also be used for other minimal invasive skeletal interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahn JH, Yoo JC, Wang JH (2005) Posterior cruciate ligament reconstruction: double-loop hamstring tendon autograft versus Achilles tendon allograft—clinical results of a minimum 2-year follow-up. Arthroscopy 21(8):965–969

    Article  PubMed  Google Scholar 

  2. Apsingi S, Bull AM, Deehan DJ, Amis AA (2009) Review: femoral tunnel placement for PCL reconstruction in relation to the PCL fibre bundle attachments. Knee Surg Sports Traumatol Arthrosc 17(6):652–659

    Article  PubMed  Google Scholar 

  3. Bale R, Widmann G (2007) Navigated CT-guided interventions. Minim Invasive Ther Allied Technol 16(4):196–204

    Article  PubMed  Google Scholar 

  4. Bale RJ, Kovacs P, Dolati B, Hinterleithner C, Rosenberger RE (2008) Stereotactic CT-guided percutaneous stabilization of posterior pelvic ring fractures: a preclinical cadaver study. J Vasc Interv Radiol 19(7):1093–1098

    Article  PubMed  Google Scholar 

  5. Bale RJ, Lottersberger C, Vogele M et al (2002) A novel vacuum device for extremity immobilisation during digital angiography: preliminary clinical experiences. Eur Radiol 12(12):2890–2894

    CAS  PubMed  Google Scholar 

  6. Bergfeld JA, McAllister DR, Parker RD, Valdevit AD, Kambic HE (2001) A biomechanical comparison of posterior cruciate ligament reconstruction techniques. Am J Sports Med 29(2):129–136

    CAS  PubMed  Google Scholar 

  7. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    CAS  PubMed  Google Scholar 

  8. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160

    Article  CAS  PubMed  Google Scholar 

  9. Bland JM, Altman DG (2003) Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol 22(1):85–93

    Article  CAS  PubMed  Google Scholar 

  10. Chen CH (2007) Surgical treatment of posterior cruciate ligament injury. Chang Gung Med J 30(6):480–492

    PubMed  Google Scholar 

  11. Christel P (2003) Basic principles for surgical reconstruction of the PCL in chronic posterior knee instability. Knee Surg Sports Traumatol Arthrosc 11(5):289–296

    Article  PubMed  Google Scholar 

  12. Fontbote CA, Sell TC, Laudner KG et al (2005) Neuromuscular and biomechanical adaptations of patients with isolated deficiency of the posterior cruciate ligament. Am J Sports Med 33(7):982–989

    Article  PubMed  Google Scholar 

  13. Grassmayr MJ, Parker DA, Coolican MR, Vanwanseele B (2007) Posterior cruciate ligament deficiency: biomechanical and biological consequences and the outcomes of conservative treatment A systematic review. J Sci Med Sport

  14. Hoher J, Scheffler S, Weiler A (2003) Graft choice and graft fixation in PCL reconstruction. Knee Surg Sports Traumatol Arthrosc 11(5):297–306

    Article  PubMed  Google Scholar 

  15. Jäger A, Linke RD (2007) Verletzungen des hinteren Kreuzbands. Trauma Berufskrankh 9:301–308

    Article  Google Scholar 

  16. Kantaras AT, Johnson DL (2002) The medial meniscal root as a landmark for tibial tunnel position in posterior cruciate ligament reconstruction. Arthroscopy 18(1):99–101

    Article  PubMed  Google Scholar 

  17. Kim SJ, Chang JH, Kang YH, Song DH, Park KY (2009) Clinical comparison of anteromedial versus anterolateral tibial tunnel direction for transtibial posterior cruciate ligament reconstruction: 2 to 8 years’ follow-up. Am J Sports Med 37(4):693–698

    Article  PubMed  Google Scholar 

  18. Koh J (2005) Computer-assisted navigation and anterior cruciate ligament reconstruction: accuracy and outcomes. Orthopedics 28(10 Suppl):S1283–S1287

    PubMed  Google Scholar 

  19. MacGillivray JD, Stein BE, Park M, Allen AA, Wickiewicz TL, Warren RF (2006) Comparison of tibial inlay versus transtibial techniques for isolated posterior cruciate ligament reconstruction: minimum 2-year follow-up. Arthroscopy 22(3):320–328

    Article  PubMed  Google Scholar 

  20. Markolf KL, Feeley BT, Jackson SR, McAllister DR (2006) Where should the femoral tunnel of a posterior cruciate ligament reconstruction be placed to best restore anteroposterior laxity and ligament forces? Am J Sports Med 34(4):604–611

    Article  PubMed  Google Scholar 

  21. Markolf KL, McAllister DR, Young CR, McWilliams J, Oakes DA (2003) Biomechanical effects of medial-lateral tibial tunnel placement in posterior cruciate ligament reconstruction. J Orthop Res 21(1):177–182

    Article  PubMed  Google Scholar 

  22. Petersen W, Lenschow S, Weimann A, Strobel MJ (2006) Importance of femoral tunnel placement in double-bundle posterior cruciate ligament reconstruction: biomechanical analysis using a robotic/universal force-moment sensor testing system. Am J Sports Med 34(4):456–463

    PubMed  Google Scholar 

  23. Petersen W, Zantop T (2006) Biomechanik des hinteren Kreuzbandes und der hinteren Instabilität. Athroskopie 19:207–214

    Article  Google Scholar 

  24. Rosenberger RE, Bale RJ, Fink C et al (2002) Computer-assisted drilling of the lower extremity. Technique and indications. Unfallchirurg 105(4):353–358

    Article  CAS  PubMed  Google Scholar 

  25. Rosenberger RE, Dolati B, Larndorfer R, Blauth M, Krappinger D, Bale RJ (2009) Accuracy of minimally invasive navigated acetabular and iliosacral fracture stabilization using a targeting and noninvasive registration device. Arch Orthop Trauma Surg (Epub ahead of print)

  26. Sarvestani A (2006) Basic principles of fluoro-navigation. In: Kempf I, Grosse A, Haarman HJTM, Seidel H, Taglang G (eds) Practice of intramedullary locked nails. Springer, Berlin, pp 243–247

    Chapter  Google Scholar 

  27. Seon JK, Song EK (2006) Reconstruction of isolated posterior cruciate ligament injuries: a clinical comparison of the transtibial and tibial inlay techniques. Arthroscopy 22(1):27–32

    Article  PubMed  Google Scholar 

  28. Sudkamp NP, Haas NP (2000) New methods of cruciate ligament surgery. Chirurg 71(9):1024–1033

    Article  CAS  PubMed  Google Scholar 

  29. Wang CJ, Chen HS, Huang TW, Yuan LJ (2002) Outcome of surgical reconstruction for posterior cruciate and posterolateral instabilities of the knee. Injury 33(9):815–821

    Article  PubMed  Google Scholar 

  30. Weiler A, Jung TM, Strobel MJ (2006) Arthroscopic assisted posterior cruciate ligament reconstruction and posterolateral stabilisation using autologous hamstring tendon grafts. Unfallchirurg 109(1):61–71

    Article  CAS  PubMed  Google Scholar 

  31. Weimann A, Wolfert A, Zantop T, Eggers AK, Raschke M, Petersen W (2007) Reducing the “killer turn” in posterior cruciate ligament reconstruction by fixation level and smoothing the tibial aperture. Arthroscopy 23(10):1104–1111

    Article  PubMed  Google Scholar 

  32. Widmann G, Eisner W, Kovacs P et al (2008) Accuracy and clinical use of a novel aiming device for frameless stereotactic brain biopsy. Minim Invasive Neurosurg 51(6):361–369

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

No financial support of this project has occurred. Prof. Bale is a co-inventor of the Vertek targeting device and a co-shareholder in its financial returns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf E. Rosenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberger, R.E., Bale, R.J., Kneisl, C. et al. Two-dimensional fluoroscopic navigation in posterior cruciate ligament reconstruction: a preclinical cadaver study. Arch Orthop Trauma Surg 130, 971–976 (2010). https://doi.org/10.1007/s00402-009-1037-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-009-1037-z

Keywords

Navigation