Centers for Disease Control and Prevention (2019) Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2014., ed. U.S. Department of Health and Human Services
Meaney DF, Morrison B, Bass CD (2014) The mechanics of traumatic brain injury: a review of what we know and what we need to know for reducing its societal burden. J Biomech Eng 136(2):021008
PubMed
Article
Google Scholar
McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE et al (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68(7):709–735
PubMed
Article
Google Scholar
Bieniek KF, Cairns NJ, Crary JF, Dickson DW, Folkerth RD, Keene CD et al (2021) The second NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. J Neuropathol Exp Neurol 80(3):210–219
CAS
PubMed
PubMed Central
Article
Google Scholar
Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM (2019) The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 137(5):731–755
PubMed
Article
Google Scholar
Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173(4):692–702
CAS
PubMed
Article
Google Scholar
Kenney K, Iacono D, Edlow BL, Katz DI, Diaz-Arrastia R, Dams-O’Connor K et al (2018) Dementia after moderate-severe traumatic brain injury: coexistence of multiple proteinopathies. J Neuropathol Exp Neurol 77(1):50–63
PubMed
Article
Google Scholar
Osier ND, Carlson SW, DeSana A, Dixon CE (2015) Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals. J Neurotrauma 32(23):1861–1882
PubMed
PubMed Central
Article
Google Scholar
Sorby-Adams AJ, Vink R, Turner RJ (2018) Large animal models of stroke and traumatic brain injury as translational tools. Am J Physiol Regul Integrative Comp Physiol 315(2):R165–R190
Article
CAS
Google Scholar
Ackermans NL, Varghese M, Wicinski B, Torres J, De Gasperi R, Pryor D et al (2021) Unconventional animal models for traumatic brain injury and chronic traumatic encephalopathy. J Neurosci Res 99:2463–2477
CAS
PubMed
PubMed Central
Article
Google Scholar
Smith T (2008) Muskox: Alaska Department of Fish and Game Wildlife Notebook, ed. Alaska Department of Fish and Game. Alaska. 2
Trim MW, Horstemeyer MF, Rhee H, El Kadiri H, Williams LN, Liao J et al (2011) The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn keratin. Acta Biomater 7(3):1228–1240
CAS
PubMed
Article
Google Scholar
Drake A, Donahue TLH, Stansloski M, Fox K, Wheatley BB, Donahue SW (2016) Horn and horn core trabecular bone of bighorn sheep rams absorbs impact energy and reduces brain cavity accelerations during high impact ramming of the skull. Acta Biomater 44:41–50
PubMed
Article
Google Scholar
Huang W, Zaheri A, Jung J-Y, Espinosa HD, Mckittrick J (2017) Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn. Acta Biomater 64:1–14
PubMed
Article
Google Scholar
Fuller LH, Donahue SW (2021) Material properties of bighorn sheep (Ovis canadensis) horncore bone with implications for energy absorption during impacts. J Mech Behav Biomed Mater 114:104224
CAS
PubMed
Article
Google Scholar
Aguirre TG, Fuller L, Ingrole A, Seek TW, Wheatley BB, Steineman BD et al (2020) Bioinspired material architectures from bighorn sheep horncore velar bone for impact loading applications. Sci Rep 10(1):1–14
Article
CAS
Google Scholar
Johnson KL, Trim MW, Mao Y, Rhee H, Williams LN, Liao J et al (2021) Finite element analysis of a ram brain during impact under wet and dry horn conditions. J Mech Behav Biomed Mater 119:104400
CAS
PubMed
Article
Google Scholar
Smoliga JM, Zavorsky GS (2017) “Tighter fit” theory—physiologists explain why “higher altitude” and jugular occlusion are unlikely to reduce risks for sports concussion and brain injuries. J Appl Physiol 1(122):215–217
Article
Google Scholar
Hollin G (2021) Consider the woodpecker: the contested more-than-human ethics of biomimetic technology and traumatic brain injury. Soc Stud Sci 52(2):149–173
PubMed
PubMed Central
Article
Google Scholar
Geist V (1971) Mountain sheep: a study in behavior and evolution. In: Schaller GB (ed) Wildlife behaviour and ecology, 2nd edn. University of Chicago Press, Chicago
Google Scholar
Snively E, Theodor JM (2011) Common functional correlates of head-strike behavior in the pachycephalosaur Stegoceras validum (Ornithischia, Dinosauria) and combative artiodactyls. PLoS ONE 6(6):e21422
CAS
PubMed
PubMed Central
Article
Google Scholar
Smith TE (1976) Reproductive behavior and related social organization of the muskox on Nunivak Island, in Life Sciences. University of Alaska Fairbanks, Fairbanks, p 138
Google Scholar
Wilkinson PF, Shank CC (1976) Rutting-fight mortality among musk oxen on Banks Island, Northwest Territories, Canada. Animal Behav 24(4):756–758
Article
Google Scholar
Anderson RW, Brown C, Blumbergs P, Scott G, Finney J, Jones N, McLean A (1999) Mechanisms of axonal injury: an experimental and numerical study of a sheep model of head impact. In: Proceedings of the International Conference on the Biomechanics of Impact (IRCOBI). Sitges, Spain
Anderson RWG, Brown CJ, Blumbergs PC, McLean AJ, Jones NR (2003) Impact mechanics and axonal injury in a sheep model. J Neurotrauma 20(10):961–974
PubMed
Article
Google Scholar
Byard RW, Bhatia KD, Reilly PL, Vink R (2009) How rapidly does cerebral swelling follow trauma? Observations using an animal model and possible implications in infancy. Leg Med 11:S128–S131
Article
Google Scholar
Daneshvar DH, Goldstein LE, Kiernan PT, Stein TD, McKee AC (2015) Post-traumatic neurodegeneration and chronic traumatic encephalopathy. Mol Cell Neurosci 66:81–90
CAS
PubMed
Article
Google Scholar
Bussière T, Friend PD, Sadeghi N, Wicinski B, Lin GI, Bouras C et al (2002) Stereologic assessment of the total cortical volume occupied by amyloid deposits and its relationship with cognitive status in aging and Alzheimer’s disease. Neuroscience 112(1):75–91
PubMed
Article
Google Scholar
RStudio Team (2020) RStudio: integrated development for R. PBC, Boston
Google Scholar
Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York
Book
Google Scholar
Hsu ET, Gangolli M, Su S, Holleran L, Stein TD, Alvarez VE et al (2018) Astrocytic degeneration in chronic traumatic encephalopathy. Acta Neuropathol 136(6):955–972
PubMed
Article
Google Scholar
Stein TD, Alvarez VE, McKee AC (2014) Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel. Alzheimer’s Res Therapy 6(1):1–11
Article
Google Scholar
Hof PR, Bouras C, Buee L, Delacourte A, Perl DP, Morrison JH (1992) Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer’s disease cases. Acta Neuropathol 85(1):23–30
CAS
PubMed
Article
Google Scholar
Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7(6):1799–1808
CAS
PubMed
PubMed Central
Article
Google Scholar
Pearson RC, Esiri MM, Hiorns RW, Wilcock GK, Powell TP (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci 82(13):4531–4534
CAS
PubMed
PubMed Central
Article
Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259
CAS
PubMed
Article
Google Scholar
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33(1):95–130
PubMed
Article
Google Scholar
Moloney CM, Lowe VJ, Murray ME (2021) Visualization of neurofibrillary tangle maturity in Alzheimer’s disease: a clinicopathologic perspective for biomarker research. Alzheimers Dement 17(9):1554–1574
CAS
PubMed
PubMed Central
Article
Google Scholar
Hernadez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV (2013) Microglia activation as a biomarker for traumatic brain injury. Front Neurol 4:30
Google Scholar
Ameen-Ali KE, Bretzin A, Lee EB, Folkerth R, Hazrati L-N, Iacono D et al (2022) Detection of astrocytic tau pathology facilitates recognition of chronic traumatic encephalopathy neuropathologic change. Acta Neuropathol Commun 10(1):1–11
Article
CAS
Google Scholar
Stein TD, Alvarez VE, McKee AC (2015) Concussion in chronic traumatic encephalopathy. Curr Pain Headache Rep 19(10):1–6
Article
Google Scholar
Vander Linden A, Dumont ER (2019) Intraspecific male combat behaviour predicts morphology of cervical vertebrae in ruminant mammals. Proc R Soc B 286(1915):20192199
PubMed
PubMed Central
Article
Google Scholar
Tsartsalis S, Xekardaki A, Hof PR, Kövari E, Bouras C (2018) Early Alzheimer-type lesions in cognitively normal subjects. Neurobiol Aging 62:34–44
PubMed
Article
Google Scholar
Geddes JF, Vowles GH, Nicoll JAR, Revesz T (1999) Neuronal cytoskeletal changes are an early consequence of repetitive head injury. Acta Neuropathol 98(2):171–178
CAS
PubMed
Article
Google Scholar
Hof PR, Knabe R, Bovier P, Bouras C (1991) Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol 82(4):321–326
CAS
PubMed
Article
Google Scholar
Smith DH, Johnson VE, Stewart W (2013) Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol 9(4):211–221
CAS
PubMed
PubMed Central
Article
Google Scholar
Corsellis JAN, Bruton CJ, Freeman-Browne D (1973) The aftermath of boxing. Psychol Med 3(3):270–303
CAS
PubMed
Article
Google Scholar
Roberts GW, Allsop D, Bruton C (1990) The occult aftermath of boxing. J Neurol Neurosurg Psychiatry 53(5):373–378
CAS
PubMed
PubMed Central
Article
Google Scholar
McKee AC, Daneshvar DH, Alvarez VE, Stein TD (2014) The neuropathology of sport. Acta Neuropathol 127(1):29–51
CAS
PubMed
Article
Google Scholar
McKee AC, Robinson ME (2014) Military-related traumatic brain injury and neurodegeneration. Alzheimers Dement 10:S242–S253
PubMed
PubMed Central
Article
Google Scholar
Shively SB, Perl DP (2012) Traumatic brain injury, shell shock, and posttraumatic stress disorder in the military—past, present, and future. J Head Trauma Rehabil 27(3):234–239
PubMed
Article
Google Scholar
Goldstein L, Fisher A, Tagge C, Zhang X-L, Velisek L, Sullivan J et al (2012) Chronic traumatic encephalopathy (CTE) in blast-exposed US military veterans and a new blast neurotrauma mouse model. Alzheimers Dement 4(8):212–213
Google Scholar
Braak H, Braak E, Strothjohann M (1994) Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat. Neurosci Lett 171(1–2):1–4
CAS
PubMed
Article
Google Scholar
Härtig W, Klein C, Brauer K, Schüppel K-F, Arendt T, Brückner G et al (2000) Abnormally phosphorylated protein tau in the cortex of aged individuals of various mammalian orders. Acta Neuropathol 100(3):305–312
PubMed
Article
Google Scholar
Härtig W, Klein C, Brauer K, Schüppel K-F, Arendt T, Bigl V et al (2001) Hyperphosphorylated protein tau is restricted to neurons devoid of perineuronal nets in the cortex of aged bison. Neurobiol Aging 22(1):25–33
PubMed
Article
Google Scholar
Tagge CA, Fisher AM, Minaeva OV, Gaudreau-Balderrama A, Moncaster JA, Zhang X-L et al (2018) Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain 141(2):422–458
PubMed
PubMed Central
Article
Google Scholar
Xu X, Cowan M, Beraldo F, Schranz A, McCunn P, Geremia N et al (2021) Repetitive mild traumatic brain injury in mice triggers a slowly developing cascade of long-term and persistent behavioral deficits and pathological changes. Acta Neuropathol Commun 9(1):1–27
CAS
Article
Google Scholar
Thomsen GM, Ma AM, Ko A, Harada MY, Wyss L, Haro PS et al (2016) A model of recurrent concussion that leads to long-term motor deficits, CTE-like tauopathy and exacerbation of an ALS phenotype. J Trauma Acute Care Surg 81(6):1070–1079
CAS
PubMed
Article
Google Scholar
Schwerin SC, Chatterjee M, Hutchinson EB, Djankpa FT, Armstrong RC, McCabe JT et al (2021) Expression of GFAP and Tau following blast exposure in the cerebral cortex of ferrets. J Neuropathol Exp Neurol 80(2):112–128
CAS
PubMed
PubMed Central
Article
Google Scholar
Smith D, Chen X, Nonaka M, Trojanowski J, Lee V-Y, Saatman K et al (1999) Accumulation of amyloid β and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J Neuropathol Exp Neurol 58(9):982–992
CAS
PubMed
Article
Google Scholar
Cole JT, Yarnell A, Kean WS, Gold E, Lewis B, Ren M et al (2011) Craniotomy: true sham for traumatic brain injury, or a sham of a sham? J Neurotrauma 28(3):359–369
PubMed
PubMed Central
Article
Google Scholar
Gardner RC, Yaffe K (2015) Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci 66:75–80
CAS
PubMed
PubMed Central
Article
Google Scholar
Elder S (2005) Ovibos moschatus (On-line). Animal Diversity Web. https://animaldiversity.org/accounts/Ovibos_moschatus/. Accessed 14 Dec 2021
Ostermann SD, Deforge JR, Edge WD (2001) Captive breeding and reintroduction evaluation criteria: a case study of peninsular bighorn sheep. Conserv Biol 15(3):749–760
Article
Google Scholar
Crisco JJ, Fiore R, Beckwith JG, Chu JJ, Brolinson PG, Duma S et al (2010) Frequency and location of head impact exposures in individual collegiate football players. J Athl Train 45(6):549–559
PubMed
PubMed Central
Article
Google Scholar
Alonso A, Grundke-Iqbal I, Iqbal K (1995) Bovine and human tau, highly homologous but less crossreactive: implications for Alzheimer disease. Mol Brain Res 31(1–2):194–200
CAS
Article
Google Scholar
Stathas S, Alvarez VE, Xia W, Nicks R, Meng G, Daley S et al (2021) Tau phosphorylation sites serine202 and serine396 are differently altered in chronic traumatic encephalopathy and Alzheimers disease. Alzheimers Dement, pp 1–12
Sharma G, Huo A, Kimura T, Shiozawa S, Kobayashi R, Sahara N et al (2019) Tau isoform expression and phosphorylation in marmoset brains. J Biol Chem 294(30):11433–11444
CAS
PubMed
PubMed Central
Article
Google Scholar
Nelson PT, Stefansson K, Gulcher J, Saper CB (1996) Molecular evolution of τ protein: implications for Alzheimer’s disease. J Neurochem 67(4):1622–1632
CAS
PubMed
Article
Google Scholar
Cherry JD, Esnault CD, Baucom ZH, Tripodis Y, Huber BR, Alvarez VE et al (2021) Tau isoforms are differentially expressed across the hippocampus in chronic traumatic encephalopathy and Alzheimer’s disease. Acta Neuropathol Commun 9(1):1–17
Article
CAS
Google Scholar
Himmler A (1989) Structure of the bovine tau gene: alternatively spliced transcripts generate a protein family. Mol Cell Biol 9(4):1389–1396
CAS
PubMed
PubMed Central
Google Scholar
Himmler A, Drechsel D, Kirschner MW, Martin DW Jr (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol 9(4):1381–1388
CAS
PubMed
PubMed Central
Google Scholar
Arnold CS, Johnson GW, Cole RN, Dong DL-Y, Lee M, Hart GW (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 271(46):28741–28744
CAS
PubMed
Article
Google Scholar
Seo J-S, Lee S, Shin J-Y, Hwang YJ, Cho H, Yoo S-K et al (2017) Transcriptome analyses of chronic traumatic encephalopathy show alterations in protein phosphatase expression associated with tauopathy. Exp Mol Med 49(5):e333
CAS
PubMed
PubMed Central
Article
Google Scholar
Kozielski F, Riaz T, DeBonis S, Koehler CJ, Kroening M, Panse I et al (2011) Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain. Amino Acids 41(2):363–385
CAS
PubMed
Article
Google Scholar
Cherry JD, Kim SH, Stein TD, Pothast MJ, Nicks R, Meng G et al (2020) Evolution of neuronal and glial tau isoforms in chronic traumatic encephalopathy. Brain Pathol 30(5):913–925
CAS
PubMed
PubMed Central
Article
Google Scholar
Arena JD, Smith DH, Lee EB, Gibbons GS, Irwin DJ, Robinson JL et al (2020) Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer’s disease. Brain 143(5):1572–1587
PubMed
PubMed Central
Article
Google Scholar
Prothero DR, Domning D, Fordyce RE, Foss S, Janis C, Lucas S et al (2021) On the Unnecessary and Misleading Taxon “Cetartiodactyla.” J Mamm Evol 29(1):93–97
Article
Google Scholar
Geist V (1966) The evolution of horn-like organs. Behaviour 27(1–2):175–214
Article
Google Scholar