Alexandersen S, Chamings A, Bhatta TR (2020) SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nat Commun 11(1):6059. https://doi.org/10.1038/s41467-020-19883-7
CAS
Article
PubMed Central
PubMed
Google Scholar
Bao L, Deng W, Huang B, Gao H, Liu J, Ren L et al (2020) The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583:830–833. https://doi.org/10.1038/s41586-020-2312-y
CAS
Article
Google Scholar
Barnett EM, Cassell MD, Perlman S (1993) Two neurotropic viruses, herpes simplex virus type 1 and mouse hepatitis virus, spread along different neural pathways from the main olfactory bulb. Neuroscience 57:1007–1025. https://doi.org/10.1016/0306-4522(93)90045-h
CAS
Article
PubMed Central
PubMed
Google Scholar
Barnett EM, Evans GD, Sun N, Perlman S, Cassell MD (1995) Anterograde tracing of trigeminal afferent pathways from the murine tooth pulp to cortex using herpes simplex virus type 1. J Neurosci 15:2972–2984. https://doi.org/10.1523/JNEUROSCI.15-04-02972.1995
CAS
Article
PubMed Central
PubMed
Google Scholar
Barrantes FJ (2020) Central nervous system targets and routes for SARS-CoV-2: current views and new hypotheses. ACS Chem Neurosci 11:2793–2803. https://doi.org/10.1021/acschemneuro.0c00434
CAS
Article
Google Scholar
Baxter BD, Larson ED, Feinstein P, Polese AG, Bubak AN, Niemeyer CS et al (2020) Transcriptional profiling reveals TRPM5-expressing cells involved in viral infection in the olfactory epithelium. bioRxiv. https://doi.org/10.1101/2020.05.14.096016 (Preprint)
Article
PubMed Central
PubMed
Google Scholar
Bilinska K, Butowt R (2020) Anosmia in COVID-19: a bumpy road to establishing a cellular mechanism. ACS Chem Neurosci 11:2152–2155. https://doi.org/10.1021/acschemneuro.0c00406
CAS
Article
PubMed Central
PubMed
Google Scholar
Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R (2020) Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci 11:1555–1562. https://doi.org/10.1021/acschemneuro.0c00210
CAS
Article
Google Scholar
Bilinska K, von Bartheld CS, Butowt R (2021) Expression of the ACE2 virus entry protein in the nervus terminalis suggests an alternative route for brain infection in COVID-19. bioRxiv. https://doi.org/10.1101/2021.04.11.439398 (Preprint)
Article
PubMed Central
PubMed
Google Scholar
Bougakov D, Podell K, Goldberg E (2021) Multiple neuroinvasive pathways in COVID-19. Mol Neurobiol 58:564–575. https://doi.org/10.1007/s12035-020-02152-5
CAS
Article
Google Scholar
Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B et al (2020) Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 6(31):eabc5801. https://doi.org/10.1126/sciadv.abc5801
CAS
Article
Google Scholar
Brechbühl J, Wood D, Bouteiller S, Lopes AC, Verdumo C, Broillet M-C (2021) Age-dependent appearance of SARS-CoV-2 entry cells in mouse chemosensory systems reflects COVID-19 anosmia and ageusia symptoms. bioRxiv. https://doi.org/10.1101/2021.03.29.437530 (Preprint)
Article
Google Scholar
Breipohl W, Laugwitz HJ, Bornfeld N (1974) Topological relations between the dendrites of olfactory sensory cells and sustentacular cells in different vertebrates. An ultrastructural study. J Anat 117:89–94
CAS
PubMed Central
PubMed
Google Scholar
Briguglio M, Bona A, Porta M, Dell’Osso B, Pregliasco FE, Banfi G (2020) Disentangling the hypothesis of host dysosmia and SARS-CoV-2: the bait symptom that hides neglected neurophysiological routes. Front Physiol 11:671. https://doi.org/10.3389/fphys.2020.00671
Article
PubMed Central
PubMed
Google Scholar
Bryche B, St Albin A, Murri S, Lacôte S, Pulido C, Ar Gouilh M et al (2020) Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun 89:579–586. https://doi.org/10.1016/j.bbi.2020.06.032
CAS
Article
PubMed Central
PubMed
Google Scholar
Burks SM, Rosas-Hernandez H, Alenjandro Ramirez-Lee M, Cuevas E, Talpos JC (2021) Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun. https://doi.org/10.1016/j.bbi.2020.12.031
Article
PubMed Central
PubMed
Google Scholar
Butler N, Pewe L, Trandem K, Perlman S (2006) Murine encephalitis caused by HCoV-OC43, a human coronavirus with broad species specificity, is partly immune-mediated. Virology 347:410–421. https://doi.org/10.1016/j.virol.2005.11.044
CAS
Article
PubMed Central
PubMed
Google Scholar
Butowt R, Bilinska K (2020) SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci 11:1200–1203. https://doi.org/10.1021/acschemneuro.0c00172
CAS
Article
Google Scholar
Butowt R, von Bartheld CS (2020) Anosmia in COVID-19: underlying mechanisms and assessment of an olfactory route to brain infection. Neuroscientist. https://doi.org/10.1177/1073858420956905
Article
PubMed Central
PubMed
Google Scholar
Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S et al (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:856–860. https://doi.org/10.1126/science.abd2985
CAS
Article
PubMed Central
PubMed
Google Scholar
Carossino M, Montanaro P, O’Connell A, Kenney D, Gertje H, Grosz KA et al (2021) Fatal neuroinvasion of SARS-CoV-2 in K18-hACE2 mice is partially dependent on hACE2 expression. bioRxiv. https://doi.org/10.1101/2021.01.13.425144 (Preprint)
Article
PubMed Central
PubMed
Google Scholar
Chan JF, Zhang AJ, Yuan S, Poon VK, Chan CC, Lee AC et al (2020) Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis 71:2428–2446. https://doi.org/10.1093/cid/ciaa325
CAS
Article
Google Scholar
Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan M Jr et al (2020) Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J 56:2001948. https://doi.org/10.1183/13993003.01948-2020
CAS
Article
PubMed Central
PubMed
Google Scholar
Cooper KW, Brann DH, Farruggia MC, Bhutani S, Pellegrino R, Tsukahara T et al (2020) COVID-19 and the chemical senses: supporting players take center stage. Neuron 107:219–233. https://doi.org/10.1016/j.neuron.2020.06.032
CAS
Article
PubMed Central
PubMed
Google Scholar
Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M et al (2020) Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci USA 117:22311–22322. https://doi.org/10.1073/pnas.2010146117
CAS
Article
Google Scholar
Deffner F, Scharr M, Klingenstein S, Klingenstein M, Milazzo A, Scherer S et al (2020) Histological evidence for the enteric nervous system and the choroid plexus as alternative routes of neuroinvasion by SARS-CoV2. Front Neuroanat 14:596439. https://doi.org/10.3389/fnana.2020.596439
CAS
Article
PubMed Central
PubMed
Google Scholar
Deng W, Bao L, Gao H, Xiang Z, Qu Y, Song Z et al (2020) Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in rhesus macaques. Nat Commun 11:4400. https://doi.org/10.1038/s41467-020-18149-6
CAS
Article
PubMed Central
PubMed
Google Scholar
de Melo GD, Lazarini F, Levallois S, Hautefort C, Michel V, Larrous F et al (2020) COVID-19 associated olfactory dysfunction reveals SARS-CoV-2 neuroinvasion and persistence in the olfactory system. bioRxiv. https://doi.org/10.1101/2020.11.18.388819 (Preprint)
Article
PubMed Central
PubMed
Google Scholar
Demski LS (1993) Terminal nerve complex. Acta Anat (Basel) 148:81–95. https://doi.org/10.1159/000147528
CAS
Article
Google Scholar
Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M et al (2019) Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses 12(1):14. https://doi.org/10.3390/v12010014
Article
PubMed Central
Google Scholar
Dey J, Alam MT, Chandra S, Gupta J, Ray U, Srivastava AK et al (2021) Neuroinvasion of SARS-CoV-2 may play a role in the breakdown of respiratory center of the brain. J Med Virol 93:1296–1303. https://doi.org/10.1002/jmv.26521
CAS
Article
PubMed
Google Scholar
Doty RL (2008) The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol 63:7–15. https://doi.org/10.1002/ana.21327
Article
PubMed
Google Scholar
Dubé M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ (2018) Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol 92(17):e00404-e418. https://doi.org/10.1128/JVI.00404-18
Article
PubMed Central
PubMed
Google Scholar
Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A et al (2020) Neurological associations of COVID-19. Lancet Neurol 19:767–783. https://doi.org/10.1016/S1474-4422(20)30221-0
CAS
Article
PubMed Central
PubMed
Google Scholar
Everett HE, Lean FZX, Byrne AMP, van Diemen PM, Rhodes S, James J et al (2021) Intranasal infection of ferrets with SARS-CoV-2 as a model for asymptomatic human infection. Viruses 13:113. https://doi.org/10.3390/v13010113
CAS
Article
PubMed Central
PubMed
Google Scholar
Falk N, Lösl M, Schröder N, Gießl A (2015) Specialized cilia in mammalian sensory systems. Cells 4:500–519. https://doi.org/10.3390/cells4030500
CAS
Article
PubMed Central
PubMed
Google Scholar
Finger TE, Bartel DL, Shultz N, Goodson NB, Greer CA (2017) 5HTR3A-driven GFP labels immature olfactory sensory neurons. J Comp Neurol 525:1743–1755. https://doi.org/10.1002/cne.24180
CAS
Article
PubMed Central
PubMed
Google Scholar
Fodoulian L, Tuberosa J, Rossier D, Boillat M, Kan C, Pauli V et al (2020) SARS-CoV-2 receptors and entry genes are expressed in the human olfactory neuroepithelium and brain. iScience 23(12):101839. https://doi.org/10.1016/j.isci.2020.101839
CAS
Article
PubMed Central
PubMed
Google Scholar
Forrester JV, McMenamin PG, Dando SJ (2018) CNS infection and immune privilege. Nat Rev Neurosci 19:655–671. https://doi.org/10.1038/s41583-018-0070-8
CAS
Article
Google Scholar
Gandhi S, Srivastava AK, Ray U, Tripathi PP (2020) Is the collapse of the respiratory center in the brain responsible for respiratory breakdown in COVID-19 patients? ACS Chem Neurosci 11:1379–1381. https://doi.org/10.1021/acschemneuro.0c00217
CAS
Article
PubMed Central
PubMed
Google Scholar
Golden JW, Cline CR, Zeng X, Garrison AR, Carey BD, Mucker EM et al (2020) Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight 5(19):e142032. https://doi.org/10.1172/jci.insight.142032
Article
PubMed Central
Google Scholar
Gupta K, Mohanty SK, Mittal A, Kalra S, Kumar S, Mishra T et al (2021) The cellular basis of the loss of smell in 2019-nCoV-infected individuals. Brief Bioinform 22:873–881. https://doi.org/10.1093/bib/bbaa168
Article
PubMed
Google Scholar
Harker JA, Johansson C (2021) Rapidly deployable mouse models of SARS-CoV-2 infection add flexibility to the COVID-19 toolbox. Am J Respir Cell Mol Biol 64:7–9. https://doi.org/10.1165/rcmb.2020-0456ED
CAS
Article
PubMed Central
PubMed
Google Scholar
Hartman AL, Nambulli S, McMillen CM, White AG, Tilston-Lunel NL, Albe JR et al (2020) SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathog 16(9):e1008903. https://doi.org/10.1371/journal.ppat.1008903
CAS
Article
PubMed Central
PubMed
Google Scholar
Hassan AO, Case JB, Winkler ES, Thackray LB, Kafai NM, Bailey AL et al (2020) A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 182:744-753.e4. https://doi.org/10.1016/j.cell.2020.06.011
CAS
Article
PubMed Central
PubMed
Google Scholar
Hoagland DA, Møller R, Uhl SA, Oishi K, Frere K, Golynker I et al (2021) Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Immunity 54:557-570.e5. https://doi.org/10.1016/j.immuni.2021.01.017
CAS
Article
PubMed Central
PubMed
Google Scholar
Hopfer H, Herzig MC, Gosert R, Menter T, Hench J, Tzankov A et al (2021) Hunting coronavirus by transmission electron microscopy—a guide to SARS-CoV-2-associated ultrastructural pathology in COVID-19 tissues. Histopathology 78:358–370. https://doi.org/10.1111/his.14264
Article
PubMed
Google Scholar
Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH 3rd et al (2020) SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182:429-446.e14. https://doi.org/10.1016/j.cell.2020.05.042
CAS
Article
PubMed Central
PubMed
Google Scholar
Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N et al (2020) Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci USA 117:16587–16595. https://doi.org/10.1073/pnas.2009799117
CAS
Article
PubMed
Google Scholar
Jiang RD, Liu MQ, Chen Y, Shan C, Zhou YW, Shen XR et al (2020) Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182:50-58.e8. https://doi.org/10.1016/j.cell.2020.05.027
CAS
Article
PubMed Central
PubMed
Google Scholar
Jiao L, Yang Y, Yu W, Zhao Y, Long H, Gao J et al (2020) SARS-CoV-2 invades the central nervous system via the olfactory route in rhesus monkeys. SSRN. https://doi.org/10.2139/ssrn.3689615 (Preprint)
Article
Google Scholar
Klingenstein M, Klingenstein S, Neckel PH, Mack AF, Wagner AP, Kleger A et al (2021) Evidence of SARS-CoV2 entry protein ACE2 in the human nose and olfactory bulb. Cells Tissues Organs 22:1–10. https://doi.org/10.1159/000513040
CAS
Article
Google Scholar
Kondo K, Suzukawa K, Sakamoto T, Watanabe K, Kanaya K, Ushio M et al (2010) Age-related changes in cell dynamics of the postnatal mouse olfactory neuroepithelium: cell proliferation, neuronal differentiation, and cell death. J Comp Neurol 518:1962–1975. https://doi.org/10.1002/cne.22316
Article
PubMed
Google Scholar
Kumari P, Rothan HA, Natekar JP, Stone S, Pathak H, Strate PG et al (2021) Neuroinvasion and encephalitis following intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice. Viruses 13(1):132. https://doi.org/10.3390/v13010132
CAS
Article
PubMed Central
PubMed
Google Scholar
Larsell O (1950) The nervus terminalis. Ann Otol Rhinol Laryngol 59:414–438. https://doi.org/10.1177/000348945005900211
CAS
Article
PubMed
Google Scholar
Le Coupanec A, Desforges M, Kaufer B, Dubeau P, Côté M, Talbot PJ (2021) Potential differences in cleavage of the S protein and type-1 interferon together control human coronavirus infection, propagation, and neuropathology within the central nervous system. J Virol (Epub). https://doi.org/10.1128/JVI.00140-21
Article
Google Scholar
Leist SR, Dinnon KH 3rd, Schäfer A, Tse LV, Okuda K, Hou YJ et al (2020) A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183:1070-1085.e12. https://doi.org/10.1016/j.cell.2020.09.050
CAS
Article
PubMed Central
PubMed
Google Scholar
Li YC, Bai WZ, Hashikawa T (2020) The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 92:552–555. https://doi.org/10.1002/jmv.25728
CAS
Article
PubMed Central
PubMed
Google Scholar
Li Z, Liu T, Yang N, Han D, Mi X, Li Y et al (2020) Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med 14:533–541. https://doi.org/10.1007/s11684-020-0786-5
Article
PubMed
Google Scholar
Liang F (2018) Olfactory receptor neuronal dendrites become mostly intra-sustentacularly enwrapped upon maturity. J Anat 232:674–685. https://doi.org/10.1111/joa.12777
CAS
Article
PubMed Central
PubMed
Google Scholar
Liang F (2020) Sustentacular cell enwrapment of olfactory receptor neuronal dendrites: an update. Genes (Basel) 11(5):493. https://doi.org/10.3390/genes11050493
CAS
Article
Google Scholar
Liberia T, Martin-Lopez E, Meller SJ, Greer CA (2019) Sequential maturation of olfactory sensory neurons in the mature olfactory epithelium. eNeuro 6(5). https://doi.org/10.1523/ENEURO.0266-19.2019
Article
PubMed Central
PubMed
Google Scholar
Liu JM, Tan BH, Wu S, Gui Y, Suo JL, Li YC (2021) Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J Med Virol 93:1304–1313. https://doi.org/10.1002/jmv.26570
CAS
Article
PubMed
Google Scholar
Machado C, DeFina PA, Chinchilla M, Machado Y, Machado Y (2020) Brainstem dysfunction in SARS-COV-2 infection can be a potential cause of respiratory distress. Neurol India 68:989–993. https://doi.org/10.4103/0028-3886.299165
Article
PubMed
Google Scholar
Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C et al (2020) Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 19:919–929. https://doi.org/10.1016/S1474-4422(20)30308-2
CAS
Article
PubMed Central
PubMed
Google Scholar
Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R et al (2021) Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 24:168–175. https://doi.org/10.1038/s41593-020-00758-5
CAS
Article
PubMed
Google Scholar
Mori I, Goshima F, Imai Y, Kohsaka S, Sugiyama T, Yoshida T et al (2002) Olfactory receptor neurons prevent dissemination of neurovirulent influenza A virus into the brain by undergoing virus-induced apoptosis. J Gen Virol 83:2109–2116. https://doi.org/10.1099/0022-1317-83-9-2109
CAS
Article
PubMed
Google Scholar
Mukerji SS, Solomon IH (2021) What can we learn from brain autopsy in COVID-19? Neurosci Lett 742:135528. https://doi.org/10.1016/j.neulet.2020.135528
CAS
Article
PubMed
Google Scholar
Muñoz-Fontela C, Dowling WE, Funnell SGP, Gsell PS, Riveros-Balta AX, Albrecht RA et al (2020) Animal models for COVID-19. Nature 586:509–515. https://doi.org/10.1038/s41586-020-2787-6
CAS
Article
PubMed
Google Scholar
Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L, Schulz J et al (2020) Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 585:268–272. https://doi.org/10.1038/s41586-020-2324-7
CAS
Article
PubMed Central
PubMed
Google Scholar
Nampoothiri S, Sauve S, Ternier G, Fernandois D, Coelho C, Imbernon M et al (2020) The hypothalamus as a hub for putative SARS-CoV-2 brain infection. bioRxiv. https://doi.org/10.1101/2020.06.08.139329 (Preprint)
Article
Google Scholar
Natoli S, Oliveira V, Calabresi P, Maia LF, Pisani A (2020) Does SARS-Cov-2 invade the brain? Translational lessons from animal models. Eur J Neurol 27:1764–1773. https://doi.org/10.1111/ene.14277
CAS
Article
PubMed
Google Scholar
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S (2008) Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 82:7264–7275. https://doi.org/10.1128/JVI.00737-0
CAS
Article
PubMed Central
PubMed
Google Scholar
Neumann B, Schmidbauer ML, Dimitriadis K, Otto S, Knier B, Niesen WD et al (2020) Cerebrospinal fluid findings in COVID-19 patients with neurological symptoms. J Neurol Sci 418:117090. https://doi.org/10.1016/j.jns.2020.117090
CAS
Article
PubMed Central
PubMed
Google Scholar
Nuovo GJ, Magro C, Shaffer T, Awad H, Suster D, Mikhail S et al (2021) Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein. Ann Diagn Pathol 51:151682. https://doi.org/10.1016/j.anndiagpath.2020.151682
Article
PubMed
Google Scholar
Oladunni FS, Park JG, Pino PA, Gonzalez O, Akhter A, Allué-Guardia A et al (2020) Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat Commun 11(1):6122. https://doi.org/10.1038/s41467-020-19891-7
CAS
Article
PubMed Central
PubMed
Google Scholar
Pellegrini L, Albecka A, Mallery DL, Kellner MJ, Paul D, Carter AP et al (2020) SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell 27:951-961.e5. https://doi.org/10.1016/j.stem.2020.10.001
CAS
Article
PubMed Central
PubMed
Google Scholar
Philippens IHCHM, Böszörményi KP, Wubben JA, Fagrouch ZC, van Driel N, Mayenburg AQ et al (2021) SARS-CoV-2 causes brain inflammation and induces Lewy body formation in macaques. bioRxiv. https://doi.org/10.1101/2021.02.23.432474 (Preprint)
Article
Google Scholar
Placantonakis DG, Aguero-Rosenfeld M, Flaifel A, Colavito J, Inglima K, Zagzag D et al (2020) SARS-CoV-2 is not detected in the cerebrospinal fluid of encephalopathic COVID-19 patients. Front Neurol 11:587384. https://doi.org/10.3389/fneur.2020.587384
Article
PubMed Central
PubMed
Google Scholar
Rathnasinghe R, Strohmeier S, Amanat F, Gillespie VL, Krammer F, García-Sastre A et al (2020) Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerg Microbes Infect 9:2433–2445. https://doi.org/10.1080/22221751.2020.1838955
CAS
Article
PubMed Central
PubMed
Google Scholar
Reza-Zaldívar EE, Hernández-Sapiéns MA, Minjarez B, Gómez-Pinedo U, Márquez-Aguirre AL, Mateos-Díaz JC et al (2021) Infection mechanism of SARS-COV-2 and its implication on the nervous system. Front Immunol 11:621735. https://doi.org/10.3389/fimmu.2020.621735
CAS
Article
PubMed Central
PubMed
Google Scholar
Rhea EM, Logsdon AF, Hansen KM, Williams LM, Reed MJ, Baumann KK et al (2021) The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat Neurosci 24:368–378. https://doi.org/10.1038/s41593-020-00771-8
CAS
Article
Google Scholar
Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB et al (2020) Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368:1012–1015. https://doi.org/10.1126/science.abb7314
CAS
Article
PubMed Central
PubMed
Google Scholar
Schlottau K, Rissmann M, Graaf A, Schön J, Sehl J, Wylezich C et al (2020) SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe 1(5):e218–e225. https://doi.org/10.1016/S2666-5247(20)30089-6
CAS
Article
PubMed Central
PubMed
Google Scholar
Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat Rec 269:33–49. https://doi.org/10.1002/ar.10047
Article
Google Scholar
Serrano GE, Walker JE, Arce R, Glass MJ, Vargas D, Sue LI et al (2021) Mapping of SARS-CoV-2 brain invasion and histopathology in COVID-19 disease. medRxiv. https://doi.org/10.1101/2021.02.15.21251511 (Preprint)
Article
PubMed Central
PubMed
Google Scholar
Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL et al (2020) Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583:834–838. https://doi.org/10.1038/s41586-020-2342-5
CAS
Article
PubMed Central
PubMed
Google Scholar
Solomon T (2021) Neurological infection with SARS-CoV-2—the story so far. Nat Rev Neurol 17:65–66. https://doi.org/10.1038/s41582-020-00453-w
CAS
Article
Google Scholar
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S et al (2021) Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 218(3):e20202135. https://doi.org/10.1084/jem.20202135
CAS
Article
PubMed Central
PubMed
Google Scholar
Sun N, Cassell MD, Perlman S (1996) Anterograde, transneuronal transport of herpes simplex virus type 1 strain H129 in the murine visual system. J Virol 70:5405–5413. https://doi.org/10.1128/JVI.70.8.5405-5413.1996
CAS
Article
PubMed Central
PubMed
Google Scholar
Sun SH, Chen Q, Gu HJ, Yang G, Wang YX, Huang XY et al (2020) A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 28:124-133.e4. https://doi.org/10.1016/j.chom.2020.05.020
CAS
Article
PubMed Central
PubMed
Google Scholar
Suzuki Y, Takeda M, Farbman AI (1996) Supporting cells as phagocytes in the olfactory epithelium after bulbectomy. J Comp Neurol 376:509–517. https://doi.org/10.1002/(SICI)1096-9861(19961223)376:4%3c509::AID-CNE1%3e3.0.CO;2-5
CAS
Article
Google Scholar
Taylor MP, Enquist LW (2015) Axonal spread of neuroinvasive viral infections. Trends Microbiol 23:283–288. https://doi.org/10.1016/j.tim.2015.01.002
CAS
Article
PubMed Central
PubMed
Google Scholar
Urata S, Maruyama J, Kishimoto-Urata M, Sattler RA, Cook R, Lin N et al (2021) Regeneration profiles of olfactory epithelium after SARS-CoV-2 infection in golden syrian hamsters. ACS Chem Neurosci 12:589–595. https://doi.org/10.1021/acschemneuro.0c00649
CAS
Article
PubMed Central
PubMed
Google Scholar
van Riel D, Verdijk R, Kuiken T (2015) The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 235:277–287. https://doi.org/10.1002/path.4461
CAS
Article
PubMed Central
PubMed
Google Scholar
von Bartheld CS (2004) The terminal nerve and its relation with extrabulbar “olfactory” projections: lessons from lampreys and lungfishes. Microsc Res Tech 65:13–24. https://doi.org/10.1002/jemt.20095
Article
Google Scholar
von Bartheld CS, Hagen MM, Butowt R (2020) Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences. ACS Chem Neurosci 11:2944–2961. https://doi.org/10.1021/acschemneuro.0c00460
CAS
Article
Google Scholar
Ye Q, Zhou J, Yang G, Li R-T, He Q, Zhang Y et al (2020) SARS-CoV-2 infection causes transient olfactory dysfunction in mice. bioRxiv. https://doi.org/10.1101/2020.11.10.376673 (Preprint)
Article
PubMed Central
PubMed
Google Scholar
Yinda CK, Port JR, Bushmaker T, Offei Owusu I, Purushotham JN, Avanzato VA et al (2021) K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog 17(1):e1009195. https://doi.org/10.1371/journal.ppat.1009195
CAS
Article
PubMed Central
PubMed
Google Scholar
Wang W, Xu Y, Gao R, Lu R, Han K, Wu G et al (2020) Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 323:1843–1844. https://doi.org/10.1001/jama.2020.3786
CAS
Article
PubMed Central
PubMed
Google Scholar
Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J et al (2020) SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol 21:1327–1335. https://doi.org/10.1038/s41590-020-0778-2
CAS
Article
PubMed Central
PubMed
Google Scholar
Zazhytska M, Kodra A, Hoagland DA, Fullard JF, Shayya H, Omer A et al (2021) Disruption of nuclear architecture as a cause of COVID-19 induced anosmia. bioRxiv. https://doi.org/10.1101/2021.02.09.430314 (Preprint)
Article
PubMed Central
PubMed
Google Scholar
Zhang AJ, Lee AC, Chu H, Chan JF, Fan Z, Li C et al (2020) SARS-CoV-2 infects and damages the mature and immature olfactory sensory neurons of hamsters. Clin Infect Dis 15:ciaa995. https://doi.org/10.1093/cid/ciaa995
Article
Google Scholar
Zheng J, Wong LR, Li K, Verma AK, Ortiz M, Wohlford-Lenane C et al (2021) COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 589:603–607. https://doi.org/10.1038/s41586-020-2943-z
CAS
Article
Google Scholar
Zhou B, Thao TTN, Hoffmann D, Taddeo A, Ebert N, Labroussaa F et al (2020) SARS-CoV-2 spike D614G variant confers enhanced replication and transmissibility. bioRxiv. https://doi.org/10.1101/2020.10.27.357558 (Preprint)
Article
PubMed Central
PubMed
Google Scholar
Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN et al (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181:1016-1035.e19. https://doi.org/10.1016/j.cell.2020.04.035
CAS
Article
PubMed Central
PubMed
Google Scholar
Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z et al (2020) SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 382:1177–1179. https://doi.org/10.1056/NEJMc2001737
Article
PubMed Central
PubMed
Google Scholar
Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S (2020) Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol 77:1018–1027. https://doi.org/10.1001/jamaneurol.2020.2065
Article
PubMed Central
PubMed
Google Scholar