Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JPY (2001) TNFα promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4:1116–1122
CAS
PubMed
Article
Google Scholar
Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS et al (2017) Necroptosis activation in Alzheimer’s disease. Nat Neurosci 20:1236–1246
CAS
Article
PubMed
Google Scholar
Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJ, Reynolds R, Martin R (2015) Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 16:147–158
CAS
PubMed
Article
Google Scholar
Calabrese M, Poretto V, Favaretto A, Alessio S, Bernardi V, Romualdi C et al (2012) Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135:2952–2961
PubMed
Article
Google Scholar
Chen X, Li W, Ren J, Huang D, He W-T, Song Y et al (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24:105–121
CAS
PubMed
Article
Google Scholar
Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558
CAS
PubMed
Article
Google Scholar
Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I et al (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7:971–981
CAS
PubMed
Article
Google Scholar
Durrenberger PF, Fernando FS, Magliozzi R, Kashefi SN, Bonnert TP, Ferrer I et al (2012) Selection of novel reference genes for use in the human central nervous system: a BrainNet Europe Study. Acta Neuropathol 124:893–903
PubMed
Article
Google Scholar
Fischer MT, Wimmer I, Höftberger R, Gerlach S, Haider L, Zrzavy T et al (2013) Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136:1799–1815
PubMed
PubMed Central
Article
Google Scholar
Fisher E, Lee JC, Nakamura K, Rudick R (2008) Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 64:255–265
PubMed
Article
Google Scholar
Fisniku LK, Chard DT, Jackson JS, Anderson VM, Altmann DR, Miszkiel KA et al (2008) Gray matter atrophy is related to long term disability in multiple sclerosis. Ann Neurol 64:247–254
PubMed
Article
Google Scholar
Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189
PubMed
PubMed Central
Article
Google Scholar
Gardner C, Magliozzi R, Durrenberger PF, Howell OW, Rundle J, Reynolds R (2013) Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain 136:3596–3608
PubMed
Article
Google Scholar
Haider L, Zrzavy T, Hametner S, Höftberger R, Bagnato F, Grabner G et al (2016) The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 139:807–815
PubMed
PubMed Central
Article
Google Scholar
Han J, Zhong CQ, Zhang DW (2011) Progammed necrosis: back up to and competitor with apoptosis in the immune system. Nat Immunol 12:1143–1149
CAS
PubMed
Article
Google Scholar
Harrison DM, Roy S, Oh J, Izbudak I, Pham D, Courtney S et al (2015) Association of cortical lesion burden on 7-t magnetic resonance imaging with cognition and disability in multiple sclerosis. JAMA Neurol 72:1004–1012
PubMed
PubMed Central
Article
Google Scholar
Howell OW, Rundle JL, Garg A, Komada M, Brophy PJ, Reynolds R (2010) Activated microglia mediate axo-glial disruption that contributes to axonal injury in multiple sclerosis. J Neuropathol Exp Neurol 69:1017–1033
PubMed
PubMed Central
Article
Google Scholar
Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman SM et al (2011) Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134:2755–2771
PubMed
Article
Google Scholar
Iannielli A, Bido S, Folladori L, Segnali A, Cancellieri C, Maresca A et al (2018) Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinsons disease models. Cell Rep 22:2066–2079
CAS
PubMed
PubMed Central
Article
Google Scholar
Jäckle K, Zeis T, Schaeren-Wiemers N, Junker A, van der Meer F, Kramann N et al (2020) Molecular signature of slowly evolving lesions in progressive multiple sclerosis. Brain 143:2073–2088
PubMed
Article
Google Scholar
James RE, Schalks R, Browne E, Eleftheriadou I, Munoz CP, Mazarakis ND et al (2020) Persistent elevation of intrathecal pro-inflammatory cytokines leads to multiple sclerosis-like cortical demyelination and neurodegeneration. Acta Neuropathol Comm 8:66
CAS
Article
Google Scholar
Junker A, Wozniak J, Voigt D, Scheidt U, Antel J, Brück W et al (2020) Extensive subpial cortical demyelination is specific to multiple sclerosis. Brain Pathol 30:641–652
PubMed
Article
Google Scholar
Jürgens T, Jafari M, Kreutzfeldt M, Bahn E, Brück W, Kerschensteiner M et al (2016) Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis. Brain 139:39–46
PubMed
Article
Google Scholar
Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R et al (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–372
CAS
PubMed
PubMed Central
Article
Google Scholar
Koper MJ, Van Schoor E, Ospitalieri S, Vandenberghe R, Vandenbulcke M, von Arnim CAF et al (2019) Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer’s disease. Acta Neuropathol 139:463–484
PubMed
Article
CAS
Google Scholar
Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W (2002) Acute axonal damage in multiple sclerosis is most externsive in early disease stages and decreases over time. Brain 125:2202–2212
PubMed
Article
Google Scholar
Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712
PubMed
Article
Google Scholar
Li J, McQuade T, Siemer Ansgar B, Napetschnig J, Moriwaki K, Hsiao Y-S et al (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150:339–350
CAS
PubMed
PubMed Central
Article
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408
CAS
Article
Google Scholar
Lloyd AF, Davies CL, Holloway RK, Labrak Y, Ireland G, Carradori D et al (2020) Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat Neurosci 22:1046–1052
Article
CAS
Google Scholar
Luchetti S, Fransen NL, van Eden CG, Ramaglia V, Mason M, Huitinga I (2018) Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol 135:511–528
CAS
PubMed
PubMed Central
Article
Google Scholar
Madsen PM, Motti D, Karmally S, Szymkowski DE, Lambertsen KL, Bethea JR et al (2016) Oligodendroglial TNFR2 mediates membrane TNF-dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination. J Neurosci 36:5128–5143
PubMed
PubMed Central
Article
Google Scholar
Magliozzi R, Howell OW, Durrenberger P, Aricò E, James R, Cruciani C et al (2019) Meningeal inflammation changes the balance of TNF signaling in cortical grey matter in multiple sclerosis. J Neuroinflammation 16:259–259
CAS
PubMed
PubMed Central
Article
Google Scholar
Magliozzi R, Howell OW, Nicholas R, Cruciani C, Castellaro M, Romualdi C et al (2018) Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann Neurol 83:739–755
CAS
PubMed
Article
Google Scholar
Magliozzi R, Howell OW, Reeves C, Roncaroli F, Nicholas R, Serafini B et al (2010) A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 68:477–493
CAS
PubMed
Article
Google Scholar
Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104
PubMed
Article
Google Scholar
Magliozzi R, Reynolds R, Calabrese M (2018) MRI of cortical lesions and its use in studying their role in MS pathogenesis and disease course. Brain Pathol 28:735–742
CAS
PubMed
Article
Google Scholar
Magliozzi R, Scalfari A, Pisani AI, Ziccardi S, Marastoni D, Pizzini FB et al (2020) The CSF profile linked to cortical damage predicts multiple sclerosis activity. Ann Neurol 88:562–573
CAS
PubMed
Article
Google Scholar
Mifflin L, Ofengeim D, Yuan J (2020) Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat Rev Drug Discov 19:553–571
CAS
PubMed
Article
Google Scholar
Moquin DM, McQuade T, Chan FK-M (2013) CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS ONE 8:e76841
CAS
PubMed
PubMed Central
Article
Google Scholar
O’Donnell MA, Ting AT (2012) NFκB and ubiquitination: partners in disarming RIPK1-mediated cell death. Immunol Res 54:214–226
PubMed
Article
CAS
Google Scholar
Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP et al (2015) Activation of necroptosis in multiple sclerosis. Cell Rep 10:1836–1849
CAS
PubMed
PubMed Central
Article
Google Scholar
Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signaling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727
CAS
PubMed
Article
Google Scholar
Oñate M, Catenaccio A, Salvadores N, Saquel C, Martinez A, Moreno-Gonzalez I et al (2020) The necroptosis machinery mediates axonal degeneration in a model of Parkinson disease. Cell Death Differ 27:1169–1185
PubMed
Article
CAS
Google Scholar
Peterson JW, Bö L, Mörk S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400
CAS
PubMed
Article
Google Scholar
Probert L (2015) TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience 302:2–22
CAS
PubMed
Article
Google Scholar
Raphael I, Gomez-Rivera F, Raphael RA, Robinson RR, Nalawade S, Forsthuber TG (2019) TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight 4:e132527
PubMed Central
Article
PubMed
Google Scholar
Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S et al (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81:1001–1008
CAS
PubMed
PubMed Central
Article
Google Scholar
Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, Howell O (2011) The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol 122:155–170
PubMed
Article
Google Scholar
Ribeiro CM, Oliveira SR, Alfieri DF, Flauzino T, Kaimen-Maciel DR, Simão ANC (2019) Tumor necrosis factor alpha (TNF-α) and its soluble receptors are associated with disability, disability progression and clinical forms of multiple sclerosis. Inflamm Res 68:1049–1059
CAS
PubMed
Article
Google Scholar
Santello M, Volterra A (2012) TNFa in synaptic function: switching gears. Trends Neurosci 35:638–647
CAS
PubMed
Article
Google Scholar
Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D et al (2019) Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573:75–82
CAS
PubMed
PubMed Central
Article
Google Scholar
Sharief MK, Hentges R (1991) Association between tumor necrosis factor-α and disease progression in patients with multiple sclerosis. N Engl J Med 325:467–472
CAS
PubMed
Article
Google Scholar
Steeland S, Van Ryckeghem S, Van Imschoot G, De Rycke R, Toussaint W, Vanhoutte L (2017) TNFR1 inhibition with a Nanobody protects against EAE development in mice. Sci Rep 7:13646–13646
PubMed
PubMed Central
Article
CAS
Google Scholar
Sun L, Wang H, Wang Z, He S, Chen S, Liao D (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227
CAS
PubMed
Article
Google Scholar
Sun X, Yin J, Starovasnik MA, Fairbrother WJ, Dixit VM (2002) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 277:9505–9511
CAS
PubMed
Article
Google Scholar
Taoufik E, Tseveleki V, Chu SY, Tselios T, Karin M, Lassmann H et al (2011) Transmembrane TNF is neuroprotective and regulates experimental autoimmune encephalomyelitis via neuronal nuclear factor-κB. Brain 134:2722–2735
PubMed
Article
Google Scholar
Trapp BD, Vignos M, Dudman J, Chang A, Fisher E, Staugaitis SM (2018) Cortical neuronal densities and cerebral white matter demyelination in multiple sclerosis: a retrospective study. Lancet Neurol 17:870–884
PubMed
PubMed Central
Article
Google Scholar
Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714
CAS
PubMed
Article
Google Scholar
Weber K, Roelandt R, Bruggeman I, Estornes Y, Vandenabeele P (2018) Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis. Commun Biol 1:6
PubMed
PubMed Central
Article
Google Scholar
Wilson NS, Dixit V, Ashkenazi A (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 10:348–355
CAS
PubMed
Article
Google Scholar
Yang Z, Wang Y, Zhang Y, He X, Zhong CQ, Ni H (2018) RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol 20:186–197
CAS
PubMed
Article
Google Scholar
Yoon S, Bogdanov K, Kovalenko A, Wallach D (2016) Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. Cell Death Differ 23:253–260
CAS
PubMed
Article
Google Scholar
Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19–33
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang T, Yin C, Boyd DF, Quarato G, Ingram JP, Shubina M (2020) Influenza virus Z-RNAs induce ZBP1-mediated necroptosis. Cell 180:1115–1129
CAS
PubMed
Article
Google Scholar
Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X (2017) RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun 8:14329
CAS
PubMed
PubMed Central
Article
Google Scholar