Abdipranoto-Cowley A, Park JS, Croucher D, Daniel J, Henshall S, Galbraith S, Mervin K, Vissel B (2009) Activin A is essential for neurogenesis following neurodegeneration. Stem cells 27:1330–1346. https://doi.org/10.1002/stem.80
Article
PubMed
PubMed Central
CAS
Google Scholar
Aggarwal S, Snaidero N, Pahler G, Frey S, Sanchez P, Zweckstetter M, Janshoff A, Schneider A, Weil MT, Schaap IA et al (2013) Myelin membrane assembly is driven by a phase transition of myelin basic proteins into a cohesive protein meshwork. PLoS Biol 11:e1001577. https://doi.org/10.1371/journal.pbio.1001577
Article
PubMed
PubMed Central
CAS
Google Scholar
Aggarwal S, Yurlova L, Snaidero N, Reetz C, Frey S, Zimmermann J, Pahler G, Janshoff A, Friedrichs J, Muller DJ et al (2011) A size barrier limits protein diffusion at the cell surface to generate lipid-rich myelin-membrane sheets. Dev Cell 21:445–456. https://doi.org/10.1016/j.devcel.2011.08.001
Article
PubMed
CAS
Google Scholar
Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, Ehrengruber MU, Meijer D, Sommer L, Stavnezer E, Colmenares C et al (2004) The protooncogene Ski controls Schwann cell proliferation and myelination. Neuron 43:499–511. https://doi.org/10.1016/j.neuron.2004.08.001
Article
PubMed
CAS
Google Scholar
Attisano L, Wrana JL, Cheifetz S, Massague J (1992) Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell 68:97–108
Article
PubMed
CAS
Google Scholar
Attisano L, Wrana JL, Montalvo E, Massague J (1996) Activation of signalling by the activin receptor complex. Mol Cell Biol 16:1066–1073
Article
PubMed
PubMed Central
CAS
Google Scholar
Bechler ME, Byrne L, Ffrench-Constant C (2015) CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr Biol 25:2411–2416. https://doi.org/10.1016/j.cub.2015.07.056
Article
PubMed
PubMed Central
CAS
Google Scholar
Billiards SS, Haynes RL, Folkerth RD, Borenstein NS, Trachtenberg FL, Rowitch DH, Ligon KL, Volpe JJ, Kinney HC (2008) Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol 18:153–163. https://doi.org/10.1111/j.1750-3639.2007.00107.x
Article
PubMed
PubMed Central
Google Scholar
Billings-Gagliardi S, Nunnari JN, Nadon NL, Wolf MK (1999) Evidence that CNS hypomyelination does not cause death of jimpy-msd mutant mice. Dev Neurosci 21:473–482 (17414)
Article
PubMed
CAS
Google Scholar
Buser JR, Maire J, Riddle A, Gong X, Nguyen T, Nelson K, Luo NL, Ren J, Struve J, Sherman LS et al (2012) Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 71:93–109. https://doi.org/10.1002/ana.22627
Article
PubMed
PubMed Central
Google Scholar
Chew LJ, Coley W, Cheng Y, Gallo V (2010) Mechanisms of regulation of oligodendrocyte development by p38 mitogen-activated protein kinase. J Neurosci 30:11011–11027. https://doi.org/10.1523/JNEUROSCI.2546-10.2010
Article
PubMed
PubMed Central
CAS
Google Scholar
Chiba K, Kataoka H, Seki N, Shimano K, Koyama M, Fukunari A, Sugahara K, Sugita T (2011) Fingolimod (FTY720), sphingosine 1-phosphate receptor modulator, shows superior efficacy as compared with interferon-beta in mouse experimental autoimmune encephalomyelitis. Int Immunopharmacol 11:366–372. https://doi.org/10.1016/j.intimp.2010.10.005
Article
PubMed
CAS
Google Scholar
Chung SH, Biswas S, Selvaraj V, Liu XB, Sohn J, Jiang P, Chen C, Chmilewsky F, Marzban H, Horiuchi M et al (2015) The p38alpha mitogen-activated protein kinase is a key regulator of myelination and remyelination in the CNS. Cell Death Dis 6:e1748. https://doi.org/10.1038/cddis.2015.119
Article
PubMed
PubMed Central
CAS
Google Scholar
Craner MJ, Lo AC, Black JA, Waxman SG (2003) Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain 126:1552–1561. https://doi.org/10.1093/brain/awg153
Article
PubMed
Google Scholar
Csiza CK, de Lahunta A (1979) Myelin deficiency (md): a neurologic mutant in the Wistar rat. Am J Pathol 95:215–224
PubMed
PubMed Central
CAS
Google Scholar
Duncan ID, Brower A, Kondo Y, Curlee JF Jr, Schultz RD (2009) Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci USA 106:6832–6836. https://doi.org/10.1073/pnas.0812500106
Article
PubMed
PubMed Central
Google Scholar
Duncan ID, Kondo Y, Zhang SC (2011) The myelin mutants as models to study myelin repair in the leukodystrophies. Neurotherapeutics 8:607–624. https://doi.org/10.1007/s13311-011-0080-y
Article
PubMed
PubMed Central
Google Scholar
Duncan ID, Nadon NL, Hoffman RL, Lunn KF, Csiza C, Wells MR (1995) Oligodendrocyte survival and function in the long-lived strain of the myelin deficient rat. J Neurocytol 24:745–762
Article
PubMed
CAS
Google Scholar
Dutta DJ, Zameer A, Mariani JN, Zhang J, Asp L, Huynh J, Mahase S, Laitman BM, Argaw AT, Mitiku N et al (2014) Combinatorial actions of Tgfbeta and Activin ligands promote oligodendrocyte development and CNS myelination. Development 141:2414–2428. https://doi.org/10.1242/dev.106492
Article
PubMed
PubMed Central
CAS
Google Scholar
Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585. https://doi.org/10.1101/gad.1806309
Article
PubMed
PubMed Central
CAS
Google Scholar
Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang EJ, Nusse R et al (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14:1009–1016. https://doi.org/10.1038/nn.2855
Article
PubMed
PubMed Central
CAS
Google Scholar
Fang L, Wang YN, Cui XL, Fang SY, Ge JY, Sun Y, Liu ZH (2012) The role and mechanism of action of activin A in neurite outgrowth of chicken embryonic dorsal root ganglia. J Cell Sci 125:1500–1507. https://doi.org/10.1242/jcs.094151
Article
PubMed
CAS
Google Scholar
Florio P, Luisi S, Bruschettini M, Grutzfeld D, Dobrzanska A, Bruschettini P, Petraglia F, Gazzolo D (2004) Cerebrospinal fluid activin a measurement in asphyxiated full-term newborns predicts hypoxic ischemic encephalopathy. Clin Chem 50:2386–2389. https://doi.org/10.1373/clinchem.2004.035774
Article
PubMed
CAS
Google Scholar
Foran DR, Peterson AC (1992) Myelin acquisition in the central nervous system of the mouse revealed by an MBP-Lac Z transgene. J Neurosci 12:4890–4897
Article
PubMed
CAS
Google Scholar
Fragoso G, Haines JD, Roberston J, Pedraza L, Mushynski WE, Almazan G (2007) p38 mitogen-activated protein kinase is required for central nervous system myelination. Glia 55:1531–1541. https://doi.org/10.1002/glia.20567
Article
PubMed
Google Scholar
Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521. https://doi.org/10.1038/nature11007
Article
PubMed
PubMed Central
CAS
Google Scholar
Fyffe-Maricich SL, Karlo JC, Landreth GE, Miller RH (2011) The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation. J Neurosci 31:843–850. https://doi.org/10.1523/JNEUROSCI.3239-10.2011
Article
PubMed
PubMed Central
CAS
Google Scholar
Goebbels S, Wieser GL, Pieper A, Spitzer S, Weege B, Yan K, Edgar JM, Yagensky O, Wichert SP, Agarwal A et al (2017) A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci 20:10–15. https://doi.org/10.1038/nn.4425
Article
PubMed
CAS
Google Scholar
Haines JD, Fragoso G, Hossain S, Mushynski WE, Almazan G (2008) p38 Mitogen-activated protein kinase regulates myelination. J Mol Neurosci 35:23–33. https://doi.org/10.1007/s12031-007-9011-0
Article
PubMed
CAS
Google Scholar
He JT, Mang J, Mei CL, Yang L, Wang JQ, Xing Y, Yang H, Xu ZX (2012) Neuroprotective effects of exogenous activin A on oxygen-glucose deprivation in PC12 cells. Molecules 17:315–327. https://doi.org/10.3390/molecules17010315
Article
CAS
Google Scholar
Huang JK, Jarjour AA, Nait Oumesmar B, Kerninon C, Williams A, Krezel W, Kagechika H, Bauer J, Zhao C, Baron-Van Evercooren A et al (2011) Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 14:45–53. https://doi.org/10.1038/nn.2702
Article
PubMed
CAS
Google Scholar
Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131:1464–1477. https://doi.org/10.1093/brain/awn080
Article
PubMed
CAS
Google Scholar
Jablonska B, Scafidi J, Aguirre A, Vaccarino F, Nguyen V, Borok E, Horvath TL, Rowitch DH, Gallo V (2012) Oligodendrocyte regeneration after neonatal hypoxia requires FoxO1-mediated p27Kip1 expression. J Neurosci 32:14775–14793. https://doi.org/10.1523/JNEUROSCI.2060-12.2012
Article
PubMed
PubMed Central
CAS
Google Scholar
Jackson KF, Duncan ID (1988) Cell kinetics and cell death in the optic nerve of the myelin deficient rat. J Neurocytol 17:657–670
Article
PubMed
CAS
Google Scholar
Jones AE, Price FD, Le Grand F, Soleimani VD, Dick SA, Megeney LA, Rudnicki MA (2015) Wnt/beta-catenin controls follistatin signalling to regulate satellite cell myogenic potential. Skelet Muscle 5:14. https://doi.org/10.1186/s13395-015-0038-6
Article
PubMed
PubMed Central
CAS
Google Scholar
Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93:F153–F161. https://doi.org/10.1136/adc.2006.108837
Article
PubMed
PubMed Central
CAS
Google Scholar
Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276. https://doi.org/10.1016/S0002-9440(10)64537-3
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131:1749–1758. https://doi.org/10.1093/brain/awn096
Article
PubMed
CAS
Google Scholar
Lindsay SJ, Xu Y, Lisgo SN, Harkin LF, Copp AJ, Gerrelli D, Clowry GJ, Talbot A, Keogh MJ, Coxhead J et al (2016) HDBR expression: a unique resource for global and individual gene expression studies during early human brain development. Front Neuroanat 10:86. https://doi.org/10.3389/fnana.2016.00086
Article
PubMed
PubMed Central
CAS
Google Scholar
Looney AM, Ahearne CE, Hallberg B, Boylan GB, Murray DM (2016) Downstream mRNA target analysis in neonatal hypoxic-ischaemic encephalopathy identifies novel marker of severe injury: a proof of concept paper. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0330-4
PubMed
Article
Google Scholar
Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcao A, Xiao L, Li H, Haring M, Hochgerner H, Romanov RA et al (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352:1326–1329. https://doi.org/10.1126/science.aaf6463
Article
PubMed
PubMed Central
CAS
Google Scholar
Martens JW, de Winter JP, Timmerman MA, McLuskey A, van Schaik RH, Themmen AP, de Jong FH (1997) Inhibin interferes with activin signaling at the level of the activin receptor complex in Chinese hamster ovary cells. Endocrinology 138:2928–2936. https://doi.org/10.1210/endo.138.7.5250
Article
PubMed
CAS
Google Scholar
Martinez G, Carnazza ML, Di Giacomo C, Sorrenti V, Vanella A (2001) Expression of bone morphogenetic protein-6 and transforming growth factor-beta1 in the rat brain after a mild and reversible ischemic damage. Brain Res 894:1–11
Article
PubMed
CAS
Google Scholar
Meikle L, Talos DM, Onda H, Pollizzi K, Rotenberg A, Sahin M, Jensen FE, Kwiatkowski DJ (2007) A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 27:5546–5558. https://doi.org/10.1523/JNEUROSCI.5540-06.2007
Article
PubMed
CAS
Google Scholar
Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218. https://doi.org/10.1038/nn.3469
Article
PubMed
PubMed Central
CAS
Google Scholar
Murray PD, McGavern DB, Sathornsumetee S, Rodriguez M (2001) Spontaneous remyelination following extensive demyelination is associated with improved neurological function in a viral model of multiple sclerosis. Brain 124:1403–1416
Article
PubMed
PubMed Central
CAS
Google Scholar
Narayanan SP, Flores AI, Wang F, Macklin WB (2009) Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J Neurosci 29:6860–6870. https://doi.org/10.1523/JNEUROSCI.0232-09.2009
Article
PubMed
PubMed Central
CAS
Google Scholar
Nawaz S, Sanchez P, Schmitt S, Snaidero N, Mitkovski M, Velte C, Bruckner BR, Alexopoulos I, Czopka T, Jung SY et al (2015) Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell 34:139–151. https://doi.org/10.1016/j.devcel.2015.05.013
Article
PubMed
PubMed Central
CAS
Google Scholar
Palazuelos J, Klingener M, Aguirre A (2014) TGFbeta signaling regulates the timing of CNS myelination by modulating oligodendrocyte progenitor cell cycle exit through SMAD3/4/FoxO1/Sp1. J Neurosci 34:7917–7930. https://doi.org/10.1523/JNEUROSCI.0363-14.2014
Article
PubMed
PubMed Central
CAS
Google Scholar
Patel JR, McCandless EE, Dorsey D, Klein RS (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci USA 107:11062–11067. https://doi.org/10.1073/pnas.1006301107
Article
PubMed
PubMed Central
CAS
Google Scholar
Petersen MA, Ryu JK, Chang KJ, Etxeberria A, Bardehle S, Mendiola AS, Kamau-Devers W, Fancy SPJ, Thor A, Bushong EA et al (2017) Fibrinogen activates BMP signaling in oligodendrocyte progenitor cells and inhibits remyelination after vascular damage. Neuron 96(1003–1012):e1007. https://doi.org/10.1016/j.neuron.2017.10.008
CAS
Article
Google Scholar
Phillips DJ, Nguyen P, Adamides AA, Bye N, Rosenfeld JV, Kossmann T, Vallance S, Murray L, Morganti-Kossmann MC (2006) Activin a release into cerebrospinal fluid in a subset of patients with severe traumatic brain injury. J Neurotrauma 23:1283–1294. https://doi.org/10.1089/neu.2006.23.1283
Article
PubMed
Google Scholar
Qiu W, Li X, Tang H, Huang AS, Panteleyev AA, Owens DM, Su GH (2011) Conditional activin receptor type 1B (Acvr1b) knockout mice reveal hair loss abnormality. J Invest Dermatol 131:1067–1076. https://doi.org/10.1038/jid.2010.400
Article
PubMed
CAS
Google Scholar
Sakai N, Inui K, Tatsumi N, Fukushima H, Nishigaki T, Taniike M, Nishimoto J, Tsukamoto H, Yanagihara I, Ozono K et al (1996) Molecular cloning and expression of cDNA for murine galactocerebrosidase and mutation analysis of the twitcher mouse, a model of Krabbe’s disease. J Neurochem 66:1118–1124
Article
PubMed
CAS
Google Scholar
Sakai T, Xu Y (2012) Stem cells decreased neuronal cell death after hypoxic stress in primary fetal rat neurons in vitro. Cell Transplant 21:355–364. https://doi.org/10.3727/096368911X580545
Article
PubMed
Google Scholar
Schneider-Kolsky ME, Manuelpillai U, Waldron K, Dole A, Wallace EM (2002) The distribution of activin and activin receptors in gestational tissues across human pregnancy and during labour. Placenta 23:294–302. https://doi.org/10.1053/plac.2002.0787
Article
PubMed
CAS
Google Scholar
Segovia KN, McClure M, Moravec M, Luo NL, Wan Y, Gong X, Riddle A, Craig A, Struve J, Sherman LS et al (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63:520–530. https://doi.org/10.1002/ana.21359
Article
PubMed
PubMed Central
Google Scholar
Seki Y, Kato TA, Monji A, Mizoguchi Y, Horikawa H, Sato-Kasai M, Yoshiga D, Kanba S (2013) Pretreatment of aripiprazole and minocycline, but not haloperidol, suppresses oligodendrocyte damage from interferon-gamma-stimulated microglia in co-culture model. Schizophr Res 151:20–28. https://doi.org/10.1016/j.schres.2013.09.011
Article
PubMed
Google Scholar
Sekiya T, Adachi S, Kohu K, Yamada T, Higuchi O, Furukawa Y, Nakamura Y, Nakamura T, Tashiro K, Kuhara S et al (2004) Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-beta signaling, as a target of the beta-catenin pathway in colorectal tumor cells. J Biol Chem 279:6840–6846. https://doi.org/10.1074/jbc.M310876200
Article
PubMed
CAS
Google Scholar
Snaidero N, Mobius W, Czopka T, Hekking LH, Mathisen C, Verkleij D, Goebbels S, Edgar J, Merkler D, Lyons DA et al (2014) Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156:277–290. https://doi.org/10.1016/j.cell.2013.11.044
Article
PubMed
PubMed Central
CAS
Google Scholar
Thurnherr T, Benninger Y, Wu X, Chrostek A, Krause SM, Nave KA, Franklin RJ, Brakebusch C, Suter U, Relvas JB (2006) Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS. J Neurosci 26:10110–10119. https://doi.org/10.1523/JNEUROSCI.2158-06.2006
Article
PubMed
CAS
Google Scholar
Werner S, Alzheimer C (2006) Roles of activin in tissue repair, fibrosis, and inflammatory disease. Cytokine Growth Factor Rev 17:157–171. https://doi.org/10.1016/j.cytogfr.2006.01.001
Article
PubMed
CAS
Google Scholar
Yuen TJ, Johnson KR, Miron VE, Zhao C, Quandt J, Harrisingh MC, Swire M, Williams A, McFarland HF, Franklin RJ et al (2013) Identification of endothelin 2 as an inflammatory factor that promotes central nervous system remyelination. Brain 136:1035–1047. https://doi.org/10.1093/brain/awt024
Article
PubMed
PubMed Central
Google Scholar
Yuen TJ, Silbereis JC, Griveau A, Chang SM, Daneman R, Fancy SP, Zahed H, Maltepe E, Rowitch DH (2014) Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 158:383–396. https://doi.org/10.1016/j.cell.2014.04.052
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang H, Jarjour AA, Boyd A, Williams A (2011) Central nervous system remyelination in culture–a tool for multiple sclerosis research. Exp Neurol 230:138–148. https://doi.org/10.1016/j.expneurol.2011.04.009
Article
PubMed
PubMed Central
Google Scholar
Zuchero JB, Fu MM, Sloan SA, Ibrahim A, Olson A, Zaremba A, Dugas JC, Wienbar S, Caprariello AV, Kantor C et al (2015) CNS myelin wrapping is driven by actin disassembly. Dev Cell 34:152–167. https://doi.org/10.1016/j.devcel.2015.06.011
Article
PubMed
PubMed Central
CAS
Google Scholar