Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. doi:10.1038/75556
PubMed
Article
CAS
Google Scholar
Chang Q, Martin LJ (2011) Glycine receptor channels in spinal motoneurons are abnormal in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 31(8):2815–2827. doi:10.1523/JNEUROSCI.2475-10.2011
PubMed
Article
CAS
Google Scholar
Dalla Torre di Sanguinetto SA, Dasen JS, Arber S (2008) Transcriptional mechanisms controlling motor neuron diversity and connectivity. Curr Opin Neurobiol 18(1):36–43. doi:10.1016/j.conb.2008.04.002
PubMed
Article
CAS
Google Scholar
Dasen JS, Tice BC, Brenner-Morton S, Jessell TM (2005) A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123(3):477–491. doi:10.1016/j.cell.2005.09.009
PubMed
Article
CAS
Google Scholar
Davidson D, Graham E, Sime C, Hill R (1988) A gene with sequence similarity to Drosophila engrailed is expressed during the development of the neural tube and vertebrae in the mouse. Development 104(2):305–316
PubMed
CAS
Google Scholar
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3
PubMed
Article
Google Scholar
Dong H, O’Brien R, Fung E, Lanahan A, Worley P, Huganir R (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386(6622):279–284. doi:10.1038/386279a0
PubMed
Article
CAS
Google Scholar
Enterzari-Taher M, Eisen A, Stewart H, Nakajima M (1997) Abnormalities of cortical inhibitory neurons in amyotrophic lateral sclerosis. Muscle Nerve 20(1):65–71
PubMed
Article
CAS
Google Scholar
Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):616–630. doi:10.1038/nrneurol.2011.152
PubMed
Article
CAS
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80. doi:10.1186/gb-2004-5-10-r80
PubMed
Article
Google Scholar
Guthrie S (2007) Patterning and axon guidance of cranial motor neurons. Nat Rev Neurosci 8(11):859–871. doi:10.1038/nrn2254
PubMed
Article
CAS
Google Scholar
Harrison AR, Anderson BC, Thompson LV, McLoon LK (2007) Myofiber length and three-dimensional localization of NMJs in normal and botulinum toxin treated adult extraocular muscles. Invest Ophthalmol Vis Sci 48(8):3594–3601. doi:10.1167/iovs.06-1239
PubMed
Article
Google Scholar
Hayashi H, Kato S (1989) Total manifestations of amyotrophic lateral sclerosis. ALS in the totally locked-in state. J Neurol Sci 93(1):19–35
PubMed
Article
CAS
Google Scholar
Hedlund E, Karlsson M, Osborn T, Ludwig W, Isacson O (2010) Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection. Brain 133(Pt 8):2313–2330. doi:10.1093/brain/awq167
PubMed
Article
Google Scholar
Hideyama T, Yamashita T, Suzuki T, Tsuji S, Higuchi M, Seeburg PH, Takahashi R, Misawa H, Kwak S (2010) Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2. J Neurosci Off J Soc Neurosci 30(36):11917–11925. doi:10.1523/JNEUROSCI.2021-10.2010
Article
CAS
Google Scholar
Hossaini M, Cardona Cano S, van Dis V, Haasdijk ED, Hoogenraad CC, Holstege JC, Jaarsma D (2011) Spinal inhibitory interneuron pathology follows motor neuron degeneration independent of glial mutant superoxide dismutase 1 expression in SOD1-ALS mice. J Neuropathol Exp Neurol 70(8):662–677. doi:10.1097/NEN.0b013e31822581ac
PubMed
Article
Google Scholar
Ince P (2000) Neuropathology. In: Brown RJ, Meininger V, Swash M (eds) Amyotrophic lateral sclerosis. Martin Dunitz, London, pp 83–112
Google Scholar
Ince P, McArthur F, Bjertness E, Torvik A, Candy J, Edwardson J (1995) Neuropathological diagnoses in elderly patients in Oslo: Alzheimer’s disease, Lewy body disease, vascular lesions. Dementia 6(3):162–168
PubMed
CAS
Google Scholar
Kabashi E, Agar J, Taylor D, Minotti S, Durham H (2004) Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J Neurochem 89(6):1325–1335. doi:10.1111/j.1471-4159.2004.02453.x
PubMed
Article
CAS
Google Scholar
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30
PubMed
Article
CAS
Google Scholar
Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427(6977):801. doi:10.1038/427801a
PubMed
Article
CAS
Google Scholar
Kawahara Y, Kwak S, Sun H, Ito K, Hashida H, Aizawa H, Jeong SY, Kanazawa I (2003) Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J Neurochem 85(3):680–689
PubMed
Article
CAS
Google Scholar
Khanna S, Richmonds CR, Kaminski HJ, Porter JD (2003) Molecular organization of the extraocular muscle neuromuscular junction: partial conservation of and divergence from the skeletal muscle prototype. Invest Ophthalmol Vis Sci 44(5):1918–1926
PubMed
Article
Google Scholar
Kolde G, Bachus R, Ludolph AC (1996) Skin involvement in amyotrophic lateral sclerosis. Lancet 347(9010):1226–1227
PubMed
Article
CAS
Google Scholar
Kuner R, Groom AJ, Bresink I, Kornau HC, Stefovska V, Muller G, Hartmann B, Tschauner K, Waibel S, Ludolph AC, Ikonomidou C, Seeburg PH, Turski L (2005) Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. Proc Natl Acad Sci USA 102(16):5826–5831. doi:10.1073/pnas.0501316102
PubMed
Article
CAS
Google Scholar
Laslo P, Lipski J, Nicholson L, Miles G, Funk G (2001) GluR2 AMPA receptor subunit expression in motoneurons at low and high risk for degeneration in amyotrophic lateral sclerosis. Exp Neurol 169(2):461–471. doi:10.1006/exnr.2001.7653
PubMed
Article
CAS
Google Scholar
Leigh PN, Ray-Chaudhuri K (1994) Motor neuron disease. J Neurol Neurosurg Psychiatry 57(8):886–896
PubMed
Article
CAS
Google Scholar
Levitan E, Schofield P, Burt D, Rhee L, Wisden W, Köhler M, Fujita N, Rodriguez H, Stephenson A, Darlison M (1988) Structural and functional basis for GABAA receptor heterogeneity. Nature 335(6185):76–79. doi:10.1038/335076a0
PubMed
Article
CAS
Google Scholar
Liu X, Milo M, Lawrence ND, Rattray M (2006) Probe-level measurement error improves accuracy in detecting differential gene expression. Bioinformatics 22(17):2107–2113. doi:10.1093/bioinformatics/btl361
PubMed
Article
CAS
Google Scholar
Lloyd CM, Richardson MP, Brooks DJ, Al-Chalabi A, Leigh PN (2000) Extramotor involvement in ALS: PET studies with the GABA(A) ligand [(11)C]flumazenil. Brain J Neurol 123(Pt 11):2289–2296
Article
Google Scholar
Lorenzo LE, Barbe A, Portalier P, Fritschy JM, Bras H (2006) Differential expression of GABAA and glycine receptors in ALS-resistant vs. ALS-vulnerable motoneurons: possible implications for selective vulnerability of motoneurons. Eur J Neurosci 23(12):3161–3170. doi:10.1111/j.1460-9568.2006.04863.x
PubMed
Article
Google Scholar
Luzzi V, Mahadevappa M, Raja R, Warrington JA, Watson MA (2003) Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. J Mol Diagn JMD 5(1):9–14. doi:10.1016/S1525-1578(10)60445-X
Article
CAS
Google Scholar
Mackenzie IR, Feldman HH (2005) Ubiquitin immunohistochemistry suggests classic motor neuron disease, motor neuron disease with dementia, and frontotemporal dementia of the motor neuron disease type represent a clinicopathologic spectrum. J Neuropathol Exp Neurol 64(8):730–739
PubMed
Article
Google Scholar
Madden K (1994) Effect of gamma-aminobutyric acid modulation on neuronal ischemia in rabbits. Stroke 25(11):2271–2274 discussion 2274–2275
PubMed
Article
CAS
Google Scholar
Magoul R, Onteniente B, Geffard M, Calas A (1987) Anatomical distribution and ultrastructural organization of the GABAergic system in the rat spinal cord. An immunocytochemical study using anti-GABA antibodies. Neuroscience 20(3):1001–1009
PubMed
Article
CAS
Google Scholar
Mannen T, Iwata M, Toyokura Y, Nagashima K (1977) Preservation of a certain motoneurone group of the sacral cord in amyotrophic lateral sclerosis: its clinical significance. J Neurol Neurosurg Psychiatry 40(5):464–469
PubMed
Article
CAS
Google Scholar
Nihei K, McKee A, Kowall N (1993) Patterns of neuronal degeneration in the motor cortex of amyotrophic lateral sclerosis patients. Acta Neuropathol 86(1):55–64
PubMed
Article
CAS
Google Scholar
Nimchinsky E, Young W, Yeung G, Shah R, Gordon J, Bloom F, Morrison J, Hof P (2000) Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice. J Comp Neurol 416(1):112–125. doi:10.1002/(SICI)1096-9861(20000103)416:1<112:AID-CNE9>3.0.CO;2-K
PubMed
Article
CAS
Google Scholar
Ning K, Li L, Liao M, Liu B, Mielke JG, Chen Y, Duan Y, El-Hayek YH, Wan Q (2004) Circadian regulation of GABAA receptor function by CKI epsilon-CKI delta in the rat suprachiasmatic nuclei. Nat Neurosci 7(5):489–490. doi:10.1038/nn1236
PubMed
Article
CAS
Google Scholar
Okamoto K, Hirai S, Amari M, Iizuka T, Watanabe M, Murakami N, Takatama M (1993) Oculomotor nuclear pathology in amyotrophic lateral sclerosis. Acta Neuropathol 85(5):458–462
PubMed
Article
CAS
Google Scholar
Okamoto K, Hirai S, Ishiguro K, Kawarabayashi T, Takatama M (1991) Light and electron microscopic and immunohistochemical observations of the Onuf’s nucleus of amyotrophic lateral sclerosis. Acta Neuropathol 81(6):610–614
PubMed
Article
CAS
Google Scholar
Ono S, Imai T, Takahashi K, Jinnai K, Yamano T, Nagao K, Shimizu N, Yamauchi M (1998) Decreased type IV collagen of skin and serum in patients with amyotrophic lateral sclerosis. Neurology 51(1):114–120
PubMed
Article
CAS
Google Scholar
Ono S, Mechanic GL, Yamauchi M (1990) Amyotrophic lateral sclerosis: unusually low content of collagen in skin. J Neurol Sci 100(1–2):234–237
PubMed
Article
CAS
Google Scholar
Pachter BR (1983) Rat extraocular muscle. 1. Three dimensional cytoarchitecture, component fibre populations and innervation. J Anat 137(Pt 1):143–159
PubMed
Google Scholar
Pearson RD, Liu X, Sanguinetti G, Milo M, Lawrence ND, Rattray M (2009) puma: a Bioconductor package for propagating uncertainty in microarray analysis. BMC Bioinforma 10:211. doi:10.1186/1471-2105-10-211
Article
Google Scholar
Porter JD (2002) Extraocular muscle: cellular adaptations for a diverse functional repertoire. Ann NY Acad Sci 956:7–16
PubMed
Article
Google Scholar
Porter JD, Baker RS (1996) Muscles of a different ‘color’: the unusual properties of the extraocular muscles may predispose or protect them in neurogenic and myogenic disease. Neurology 46(1):30–37
PubMed
Article
CAS
Google Scholar
Porter JD, Hauser KF (1993) Survival of extraocular muscle in long-term organotypic culture: differential influence of appropriate and inappropriate motoneurons. Dev Biol 160(1):39–50. doi:10.1006/dbio.1993.1284
PubMed
Article
CAS
Google Scholar
Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Andrade FH (2001) Extraocular muscle is defined by a fundamentally distinct gene expression profile. Proc Natl Acad Sci USA 98(21):12062–12067. doi:10.1073/pnas.211257298
PubMed
Article
CAS
Google Scholar
Robinson DA (1970) Oculomotor unit behavior in the monkey. J Neurophysiol 33(3):393–403
PubMed
CAS
Google Scholar
Soghomonian J, Pinard R, Lanoir J (1989) GABA innervation in adult rat oculomotor nucleus: a radioautographic and immunocytochemical study. J Neurocytol 18(3):319–331
PubMed
Article
CAS
Google Scholar
Storey J (2003) The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 31(6):2013–2035
Article
Google Scholar
Sun H, Kawahara Y, Ito K, Kanazawa I, Kwak S (2005) Expression profile of AMPA receptor subunit mRNA in single adult rat brain and spinal cord neurons in situ. Neurosci Res 52(3):228–234. doi:10.1016/j.neures.2005.03.008
PubMed
Article
CAS
Google Scholar
Tateno M, Sadakata H, Tanaka M, Itohara S, Shin RM, Miura M, Masuda M, Aosaki T, Urushitani M, Misawa H, Takahashi R (2004) Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. Hum Mol Genet 13(19):2183–2196. doi:10.1093/hmg/ddh246
PubMed
Article
CAS
Google Scholar
Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, König J, Hortobágyi T, Nishimura AL, Zupunski V, Patani R, Chandran S, Rot G, Zupan B, Shaw CE, Ule J (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14(4):452–458. doi:10.1038/nn.2778
PubMed
Article
CAS
Google Scholar
Turner MR, Osei-Lah AD, Hammers A, Al-Chalabi A, Shaw CE, Andersen PM, Brooks DJ, Leigh PN, Mills KR (2005) Abnormal cortical excitability in sporadic but not homozygous D90A SOD1 ALS. J Neurol Neurosurg Psychiatry 76(9):1279–1285. doi:10.1136/jnnp.2004.054429
PubMed
Article
CAS
Google Scholar
Vandenberghe W, Ihle EC, Patneau DK, Robberecht W, Brorson JR (2000) AMPA receptor current density, not desensitization, predicts selective motoneuron vulnerability. J Neurosci Off J Soc Neurosci 20(19):7158–7166
CAS
Google Scholar
Vincent A, Backus C, Taubman A, Feldman E (2005) Identification of candidate drugs for the treatment of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 6(1):29–36. doi:10.1080/14660820510026171
PubMed
Article
CAS
Google Scholar